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Abstract. There are many numerical methods suitable for approximating
solutions of DSGE models. They differ in terms of accuracy, coding and com-
puting time. However for many macroeconomic applications the differences
in accuracy do not matter, since all methods generate approximations with
similar statistical properties of simulated time series. In the paper we check
whether this is also the case for DSGE models with financial variables, like
stocks and risk-free bonds. These models are usually highly nonlinear and
some special methods should be applied to approximate the asset prices. In
the paper we take a simple macro-finance DSGE model proposed by Jermann,
solve it with three different group of methods, simulate and check if the sim-
ulated series of financial variables differ in terms of basic statistical moments.
For solving the model we use the higher-order perturbation approaches, the
loglinear-lognormal method, as well as the Galerkin projection method. The
results show that there might be significant differences between moments of the
financial series in models approximated using different methods. For example
for moderate parametrization the expected risk premium in the model approxi-
mated by the Galerkin method is about half of percentage point higher than for
the perturbation methods and the loglinear lognormal approach. These results
clearly indicate that the further research on the solution methods of DSGE
models with financial variables is needed.
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1 Introduction

Dynamic stochastic general equilibrium models (DSGE) are one of the main tools used for analysis of
economic policy. Having solid microfoundations makes them from the one hand robust to the Lucas
critique but also very complicated. From the mathematical point of view a model is represented by a set
of stochastic, nonlinear difference equations. There have been many methods proposed in literature for
approximation of such systems [7]. They differ in terms of accuracy, speed and implementation difficulty
[1, 5, 6]. The most popular are perturbation methods based on local polynomial approximation of a solu-
tion, projection methods seeking for a global approximation with Chebyshev polynomials and approaches
based on solving Bellman’s optimality principle. Despite significant differences in terms of accuracy, as
far as macroeconomic variables are concerned time series simulated from models approximated with dif-
ferent methods usually have similar statistical properties. Therefore for many applications the simplest
first-order approximations, like loglinearisation, provide sufficient accuracy. However this may not be the
case if a macroeconomic model is extended to include asset prices as well, since to price stocks or bonds
correctly it is crucial to have correct second- and higher order moments of payoffs and discount factors.

In this paper we study statistical properties of asset prices in a DSGE model approximated using
several different methods. Contrary to previous papers by Aruoba, Fernandez–Villaverde and Rubio–
Ramirez [5] and Heer and Maussner [6], we use a modification of otherwise standard stochastic growth
model proposed by Jermann [8] that incorporates exogenous habits in a utility function and investment
costs. These modifications enable the model to generate a significant risk premium and therefore are
commonly included in more complex macroeconomic models. In contrast to previous studies, the model
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exhibits higher nonlinearities, that make it particularly hard to approximate accurately. We solve the
model using several perturbation methods of different orders, the Galerkin variant of the projection
approach as well as the loglinear-lognormal approach which is a method tailored to approximating asset
price dynamics in DSGE models. We show that although statistical properties of macroeconomic series in
the model are virtually the same across the methods, the behaviour of asset prices may differ significantly
which indicates the need for the further research in that area.

The paper is organized as follows. In the first section we briefly introduce the model. Then we discuss
the methods used for the approximation. Finally we present the results of the simulation study.

2 The model

The paper uses the model proposed by Jermann [8] with only one minor modification — we abstract from
the long-run growth. The economy is populated by large number of identical households who evaluate
the consumption stream according to the instantaneous utility function:

u(Ct, Ct−1) =
(Ct − χcCt−1)1−ν − 1

1− ν
, (1)

where Ct represents consumption, ν is the household’s relative risk aversion, and χc is a habit persistence
parameter. The households receive the income from work WtLt, where Wt is wage and Lt represents the
fraction of time devoted to work. Since the households own firms, they also receive dividends Dt. So the
budget constraint of the representative household has the following form:

WtLt +Dt = Ct. (2)

In every period the household maximizes its expected lifetime utility:

max
Ct

Et

[ ∞∑
h=0

βhu(Ct+h, Ct+h−1)

]
s.t. Ct+h = Wt+hLt+h +Dt+h, h = 0, 1, ... (3)

where β represents the household’s discount factor.

The representative firm combines capital Kt with labour to produce single good Yt according to
a standard Cobb–Douglas technology:

Yt = ZtK
α
t L

1−α
t , (4)

where α represents capital share in the output, whereas Zt is a stochastic shock with AR(1) law of motion:

lnZt = ρ lnZt−1 + σεt, εt ∼ N(0, 1). (5)

The capital stock owned by the firm depreciates at a constant rate δ per period and is increased by
investment It, so its evolution is given by:

Kt = Kt−1 − δKt−1 + Φ

(
It

Kt−1

)
Kt−1; Φ

(
It

Kt−1

)
=

a1
1− 1/ξ

(
It

Kt−1

)1−1/ξ

+ a0. (6)

Function Φ is a concave function capturing the idea that adjusting capital rapidly is more costly than
changing it slowly. Each period the firm decides how much labour to hire and how much to invest trying
to maximise utility of the dividend stream paid to the shareholders:

max
Lt,It,Kt

Et

[ ∞∑
h=0

βhMUt+hDt+h

]
s.t. Kt+h =

[
1− δ + Φ

(
It+h

Kt+h−1

)]
Kt+h−1, h = 0, 1, ..., (7)

where a marginal utility of the household MUt evolves according to:

MU t = (Ct − χcCt−1)
−ν − χcβEt

[
(Ct+1 − χcCt)−ν

]
(8)

and Dt corresponds to a net profit of the firm:

Dt = Yt −WtLt − It (9)
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Since labour do not enter the utility function and its marginal product is always positive the households
choose:

Lt = 1. (10)

Wage equals the marginal product of labour:

Wt = (1− α)ZtK
α
t−1. (11)

The firm’s first-order optimality conditions imply:

Qt = βEt
[
MU t+1

MU t

(
αZt+1K

α−1
t − It+1

Kt
+Qt+1

[
1− δ + Φ

(
It+1

Kt

)])]
, (12)

where Qt is a Lagrange multiplier associated with the capital law of motion constraint in the decision
problem (7):

Qt =

[
Φ′
(

It
Kt−1

)]−1
. (13)

The model has 10 macroeconomic variables and consists of 10 equations: (2), (4)–(6), (8)–(13). It
can also easily incorporate asset prices. For example, stock Pt and 1-period risk-free bond Pf,t price
dynamics are given by the standard formulas:

Pt = βEt
[
MUt+1

MUt
(Pt+1 +Dt+1)

]
, (14)

Pf,t = βEt
[
MUt+1

MUt

]
. (15)

3 Approximation methods

The model introduced in the previous section can be compactly written as follows:

Etf(Xt+1,Xt,Xt−1, σεt) = 0, εt ∼ N(0,Σ), (16)

where Xt is a vector of all nx model variables, εt represents a vector of ne stochastic shocks and f : Rnx×
Rnx × Rnx × Rne → Rnx . We look for a solution of the general form:

Xt = g(Xt−1, σεt), (17)

which can also be expressed in terms of a smaller set of state variables St:

Xt = gx(St−1, σεt), St = gs(St−1, σεt). (18)

For the analysed model the set of the state variables consists of consumption Ct−1, the capital stock
Kt−1 and the productivity shock Zt. In the next subsections we discuss three approaches used for
approximating the solution (17).

3.1 Perturbation methods

These methods are based on a local approximation of the solution with Taylor’s polynomials around the
model’s deterministic steady state. This steady state can be seen as a limit of a system without any
shocks, it is when σ = 0. Here we discuss only linearisation, the simplest of the perturbation approaches.

If we linearise the solution (17) around the steady state X̄, we get:

Xt ≈ X̄ +Gx(Xt−1 − X̄) +Gεσεt, (19)

where Gx and Gε are Jacobians of the function g with respect to Xt−1 and εt respectively. The values of
Gx and Gε can be calculated by inserting (17) into (16) and using the implicit function theorem, which
states that since the l.h.s. of (16) is equal to 0, this must also be the case for all its derivatives. This
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in turn leads to a matrix quadratic equation [6]. The linearised solution with the state variables has the
following form:

Ŝt ≈MŜt−1 +Wεt, X̂t ≈MX Ŝt−1 +WXεt, (20)

where hats over the variables represent deviations from the steady state: Ŝt = St − S̄ and the matrices
M ,W ,MX and WX consist of the elements of Gx and Gε.

The higher-order approximations can be obtained in similar, recursive way by utilizing results of the
approximation of a lower order as shown by Schmitt-Grohé and Uribe [9]. The method discussed here
is very popular since it can be easily applied to models with large number of state variables. It is also
very fast. Moreover it has been implemented in Matlab’s Dynare package [3]. The main weakness of the
approach is lack of accuracy since the obtained solution is close to the true one only near the steady state.
When the system is far from the long-run equilibrium the approximation may be poor and in extreme
cases the approximation may be divergent. However the higher-order approximations are considered by
some researchers [5] to provide the accuracy of the similar order to other, more reliable approaches.

3.2 Loglinear lognormal approach

This method was proposed by Jermann [8] exclusively for the approximation of the asset price dynamics
in linearised models. Since the linearisation abstracts from any second-order effects it cannot be used in
models with asset prices. The loglinear-lognormal approach utilizes loglinear solution for the macroeco-
nomic variables and extends it to include second-order terms for approximating asset prices. The loglinear
solution of the model has the form (20):

ŝt ≈Mŝt−1 +Wεt, x̂t ≈MX ŝt−1 +WXεt (21)

where ŝt = lnSt − ln S̄. From (15) we have:

Pf,t =βEt
[
MUt+1

MUt

]
= βEt exp

[
λ̂t+1 − λ̂t

]
= βEt exp [Mλŝt +Wλεt+1 −Mλŝt−1 −Wλεt] =

=βEt exp [Mλ (Mŝt−1 +Wεt) +Wλεt+1 −Mλŝt−1 −Wλεt] =

=βEt exp [(MλM −Mλ)ŝt−1 + (WλM −Wλ)εt +Wλεt+1] =

=β exp [(MλM −Mλ)ŝt−1 + (WλM −Wλ)εt + 0.5W ′
λWλ] ,

(22)

where in derivation we used the facts that: λ̂t = lnMUt − ln M̄U , λ̂t+1 and λ̂t follow (21) and the
expected value of the lognormal random variable E[exp(x)] = exp

[
E(x) + 0.5D2(x)

]
. The same approach

can be applied to pricing stocks using discounted dividend version of the pricing equation, as shown by
Jermann [8] and Acedański [2].

Similar to the perturbation approaches the presented method is easy to implement and can be ap-
plied to models with a large number of the state variables. However little is known about accuracy of
the solution. Moreover the loglinear-lognormal framework treats the macroeconomic variables and the
financial variables in different ways which sometimes is also considered as a weakness.

3.3 Projection method

The projection methods approximate globally either some parts of the solution (17) or some parts of
the system (16) using linear combinations of Chebyshev polynomials Tm(x) (T0(x) = 1, T1(x) = x,
Tm(x) = 2xTm−1(x) − Tm−2(x), m – polynomial order). Following Heer and Maussner [6] we use both:
we look for the approximating function Ψ(1) for the solution for Qt and for the approximation Ψ(2) of
the conditional expectation in the marginal utility dynamics (8) of the form:

Ψ(n)(C,K,Z,ψ(n)) =
∑
i,j,l

ψ
(n)
i,j,lTi(C)Tj(K)Tl(Z), i+ j + l = m, n = 1, 2, (23)

For simplification we omit the time subscripts in the approximating functions (23). The unknown coef-

ficients ψ
(1)
i,j,l and ψ

(2)
i,j,l should be set so to make the approximation functions as close as possible to the

true functions within a given space of (C,K,Z). Then if we know the solution for Qt we can easily find

the conditional solution for all other variables. To find the values of ψ
(n)
i,j,l distance measures R(n) need to
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be defined. For the first equation R(1)(C,K,Z,ψ(1)) is the difference between Ψ(1) and the r.h.s of (12)
conditional on ψ(1). For the second one R(2)(C,K,Z,ψ(2)) is the difference between Ψ(2) and the expec-
tation in (8) calculated conditional on ψ(2). The expected values in both expressions are approximated
using Gauss-Hermite quadrature formula with 10 nodes.

Then to find the values of ψ
(n)
i,j,l we use the Galerkin condition: the coefficients should be set so to

make the residuals orthogonal to the Chebyshev polynomials:∫ C

C

∫ K

K

∫ Z

Z

R(n)(C,K,Z, ψ(n)) · Ti(C) · Tj(K) · Tl(Z) dZ dK dC = 0 (24)

The quadratures above are approximated using Gauss-Chebyshev formula with 20 nods in each dimension.
For both polynomials we use order m = 6, therefore the whole system of equations has 168 unknowns.

The projection methods are considered to be the most accurate [7], even far from the steady state.
However they are hard to implement and are very slow. They also suffer from the curse of dimensionality.
To approximate accurately the model with only 3 state variables the system of equations with more than
150 unknowns must be solved.

4 Results of the simulation study

For the simulation study we utilize rather standard parametrization and set α = 0.36, β = 0.99, δ =
0.0136, ν = 5, ρ = 0.95, σ = 0.01. Only for the habit strength χc = 0.7 and the curvature of the
investment function ξ = 0.8 we use the values that slightly differ from the literature (Jermann [8] uses
χc = 0.82 and ξ = 0.23, whereas Heer and Maussner [6] study the model with χc = 0.8 and ξ = 0.23).
That parametrization do not allow the model to match the observed expected risk premium of about 6%
per annum, but it makes the model less nonlinear and therefore easier to approximate, especially for the
Galerkin method. We compare the following methods: perturbations in logs of the second-, third- and
fifth-order, the loglinear-lognormal approach and the Galerkin method. For the given parametrization
we approximate the model with these methods and run 1000 simulations with 250 quarters each.

Table 1 contains the basic moments of the macroeconomic variables. Since for all perturbation meth-
ods the results are exactly the same, we report them in one joint row. The table clearly shows that there
are no important differences between the methods as far as the macroeconomic variables are concerned.

Moments

Method D(Y ) D(C)
D(Y )

D(I)
D(Y ) ar(Y ) ar(C) ar(I) corr(C, Y ) corr(I, Y )

loglinear lognormal
0.013 0.52 3.25 0.71 0.90 0.57 0.87 0.95

perturbations

Galerkin 0.013 0.57 3.19 0.71 0.90 0.55 0.87 0.95

HP-filtered quarterly averages over 1000 simulations of 250 quarters; ar – autocorrelation coefficient; corr –
correlation coefficient.

Table 1 Moments of the simulated macroeconomic variables

In table 2 we report the moments of the financial variables. Two observations are worth noting. First,
as far as the perturbations and loglinear-lognormal approach are concerned the differences between the
moments are negligible but still at least of one order of magnitude higher than in case of the macro-
economic variables. And second, there are significant differences between the moments for the Galerkin
approach and the rest of the methods, especially in case of the expected risk premium. For the former
the premium is about 1.4 percentage point, whereas for the latter it is less than 1 percentage point. So
there is more than 40% difference, which for more extreme calibrations can be much higher in absolute
values. The nonnegligible differences are also observed for the standard deviation of the risk-free rate
(5.4 p.p. – 4.7 p.p.), the standard deviation of the dividend growth rate (2.9 p.p – 3.15 p.p) and the
expected dividend/price ratio (4.3 – 4.0). These results are in sharp contrast with Jermann [8] who found
no differences between the projection method and loglinear-lognormal approach in his model, but are
supported by the results of Aldrich and Kung [4], who also obtained significant differences in asset price
moments for the projection method and the standard perturbation techniques.
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Moments

Method E(R) E(Rf ) E(R−Rf ) D(R) D(Rf ) D(∆D) E(DP ) D(DP ) corr(R,Rf )

loglin-lognor 4.44 3.54 0.90 8.34 4.70 3.12 4.04 0.50 -0.50

perturb. 2 4.39 3.43 0.96 8.35 4.65 3.16 3.99 0.49 -0.50

perturb. 3 4.43 3.57 0.86 8.34 4.71 3.17 4.02 0.50 -0.50

perturb. 5 4.41 3.47 0.94 8.34 4.68 3.17 4.00 0.49 -0.50

Galerkin 4.71 3.31 1.40 8.27 5.40 2.88 4.32 0.52 -0.49

Annualized averages in p.p. over 1000 simulations of 250 quarters; E – unconditional mean, D – unconditional
standard deviation, corr – correlation coefficient, R – stock return, Rf – risk-free rate, ∆D – dividend growth
rate, DP – dividend/price ratio.

Table 2 Moments of the simulated financial variables

5 Conclusion

In the paper using the model proposed by Jermann we have shown that despite the differences in accuracy
all the approximation methods generate virtually the same moments of the main macroeconomic variables.
However for the financial variables the differences between the perturbation method and the projection
approaches are much higher. For moderate parametrization the expected risk premium in the model
approximated by the Galerkin method is about 0.5 percentage point higher than for the perturbation
methods and the loglinear lognormal approach. But it must be made clear that although the projection
methods are considered to be the most accurate we cannot find out which method gives the moments
that are closer to the true values in that particular case. Nonetheless these results clearly indicate that
the further research on the solution methods of DSGE models with financial variables is needed.
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