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Abstract. An oligopoly is a market where a couple of large producers supply
some goods. If the oligopoly is collusive, the producers form coalitions. Then,
within each of the coalitions, the producers wish to divide their total profit
among themselves. They could use a cooperative transferable utility game so-
lution concept, such as the core, if the game were in the coalitional form. This,
however, is not the case. In this paper, we propose an approach to overcome
that difficulty: converting the collusive oligopoly into the partition function
form, we show how the known cooperative game solution concepts (core, bar-
gaining set) can be applied to that game. Actually, the proposed approach is
suitable not only for a collusive oligopoly, but, under some assumptions, for
any cooperative strategic form game.
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1 Introduction

Let us consider a game in the strategic (or normal) form: let N = {1, . . . , n} be the set of the players,
let X1, . . . , Xn be the strategy spaces of the players, and let F1, . . . , Fn be their payoff functions. Each
Xj is a non-empty set and each Fj is a real function defined on the Cartesian product X1 × · · · ×Xn.

For a player j ∈ N, the set Xj consists of all the decisions (called strategies) which the player j can
make. At a moment, each of the players j ∈ N picks up a strategy xj ∈ Xj and receives the amount of
Fj(x1, . . . , xn) of some utility (such as money).

An example of a game in the strategic form is an oligopoly. It is a market where a couple of large
producers supply some goods. Each of the producers has enough power to influence the market by its
decisions. We shall describe the Cournot model [3] of an oligopoly here. Let N = {1, . . . , n} be the set
of the oligopolists. They supply one kind of some goods, product or commodity (such as metal, grain,
oil, etc.). For j ∈ N, let Lj > 0 be the production limit of the oligopolist j, i.e. the maximum amount
of the goods the oligopolist is able to supply to the market. Then Xj = ⟨0, Lj⟩, a closed interval, is
the oligopolist’s strategy space. Now, each of the oligopolists decides to supply some amount xj ∈ Xj

of the goods to the market. Hence, the total supply of the goods is s =
∑n

j=1 xj . Then an internal
mechanism of the market, which effects so that the market clears (the supply equals the demand for
the goods), establishes the price p(s) per a unit of the goods. The function p is the price (or inverse
demand) function of the oligopoly. The price function p is a real function defined on the closed interval
⟨0, L⟩ where L =

∑n
j=1 Lj is the maximum total supply of the goods to the market. Then xjp(s), the

supply multiplied by the unit price, is the revenue of the oligopolist j. However, the oligopolist faces some
production costs connected with the supply of the amount xj of the goods. The oligopolist’s production
costs are cj(xj) where cj is the cost function of the oligopolist j. The cost function cj is a real function
defined on the interval Xj = ⟨0, Lj⟩. Finally, the oligopolist’s net profit is Fj(x1, . . . , xn) = xjp(s)−cj(xj)
for j ∈ N where s =

∑n
j=1 xj .

Given a strategic form game (oligopoly), we say that [x∗
1, . . . , x

∗
n] ∈ X1 × · · · × Xn is a point of

the Nash equilibrium iff, for each j ∈ N, it holds Fj(x
∗
1, . . . , x

∗
j−1, xj , x

∗
j+1, . . . , x

∗
n) ≤ Fj(x

∗
1, . . . , x

∗
j−1,
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x∗
j , x

∗
j+1, . . . , x

∗
n) for all xj ∈ Xj . The Nash equilibrium is also termed the Cournot equilibrium or the

Cournot-Nash equilibrium if the strategic form game under consideration is a Cournot oligopoly.

Let us assume the given strategic form game (oligopoly) is non-cooperative in the following sense:
(A) each player j chooses the decision xj ∈ Xj independently of the other players and, at the same time,
maximizes own profit Fj(x1, . . . , xn), disregarding the payoffs of the remaining players; (B) if the situation
has “settled down”, i.e., is in a Nash equilibrium, then the players do not react at all (or react very slowly)
if only one of them tries to change the equilibrium state; as the player’s payoff Fj does not increase, the
player who tried to change the situation is returned back to the equilibrium state. Provided these two
assumptions (A) and (B) are satisfied and the game has exactly one point of the Nash equilibrium, let us
assume that the situation arrives there. Then, if we manage to find the unique point [x∗

1, . . . , x
∗
n] of the

Nash equilibrium, we shall also know the individual payoffs Fj(x
∗
1, . . . , x

∗
n), which the players will receive.

The question whether a point of the Nash equilibrium exists is addressed by the original papers
of Nash [11, 12], by the classical paper of Nikaidô and Isoda [13], or by more recent papers, e.g. [14].
Conditions for the existence and uniqueness of the Cournot equilibrium can be found, e.g., in the papers
[8, 5]. (See also [4].) Especially interesting are the papers of Szidarovszky and Yakowitz [16, 17] and the
book [15].

Now, let us consider that the given strategic form game is cooperative (the given oligopoly is collusive).
That is, the players form coalitions. A coalition is any subset of the set of the players N. Let S = {j1, . . . ,
jnS

} ⊆ N be a coalition which has emerged. The members j1, . . . , jnS
of the coalition coordinate their

decisions in order to maximize their total payoff. Naturally, the coalition’s strategy space XS comprises
the Cartesian product Xj1 × · · · ×XjnS

; when the players choose a strategy from the Cartesian product,
the total payoff FS of the coalition is the sum

∑
j∈S Fj of the individual payoffs of its members. However,

the strategy space XS may contain yet additional strategies, which are not in the Cartesian product, i.e.,
they are feasible only if the players join because a single player or a smaller group of the players may not
have enough power to realise those decisions.

The situation simplifies if the considered cooperative game is a collusive Cournot oligopoly. Given
a coalition S = {j1, . . . , jnS

} ⊆ N, the oligopolists j1, . . . , jnS
simply join their production capacities

so that the coalition’s strategy space XS reduces to the closed interval ⟨0, LS⟩ where LS =
∑

j∈S Lj .
When the coalition decides to supply some amount xS ∈ XS of the goods to the market, the oligopolists
j1, . . . , jnS

will allocate their production to their most efficient plants. Hence, the coalition’s cost function
cS is calculated as cS(xS) = min

{∑
j∈S cj(xj) :

∑
j∈S xj = xS with xj ∈ Xj for j ∈ S

}
, provided that

the minimum exists. Therefore, the coalition’s net profit is FS = xSp(s) − cS(xS) where s is the total
supply of the goods to the market.

It is definitely beyond the scope of this paper to study the process of the formation of coalitions.
Following [10], we shall simply assume that a coalition structure will “crystallize”. A coalition structure
is any partition of the set N. In other words, a coalition structure is a collection S = {S1, . . . , Sν} of
coalitions such that

∪ν
ι=1 Sι = N and Sι′ ∩ Sι′′ = ∅ iff ι′ ̸= ι′′ for all ι′, ι′′ = 1, . . . , ν.

Thus, we obtain another strategic form game where the set of the players is the set of the estab-
lished coalitions S = {S1, . . . , Sν}, their strategy spaces are XS1 , . . . , XSν and their payoff functions are
FS1 , . . . , FSν . It is quite natural to assume that, in this game, the coalitions will behave in a mutually
non-cooperative way, making the above assumptions (A) and (B) hold. Hence, if there exists exactly
one point [x∗

S1
, . . . , x∗

Sν
] of the Nash equilibrium in the game, the total payoffs FSι(x

∗
S1
, . . . , x∗

Sν
) of the

coalitions can be determined for ι = 1, . . . , ν.

Now, let the members jι,1, . . . , jι,nι of an established coalition Sι = {jι,1, . . . , jι,nι} ∈ S wish to divide
their total profit FSι among themselves. If the game were in the coalitional form (see Section 3), then the
members could use, e.g., the concept of the core [7], the bargaining set [10], or another transferable utility
(TU) game solution concept. That, however, is not the case: the cooperative game under consideration
is in the strategic form.

In this paper, in order to apply TU-game solution concepts to the given cooperative strategic form
game, we propose the following approach: First, to convert the cooperative strategic form game into
the partition function form (Section 2). And, then, to apply cooperative TU-game solution concepts to
the partition function form game (Section 3). The approach proposed here extends and generalises the
author’s earlier idea which originally appeared in [1].
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2 Conversion of a cooperative strategic form game into a partition function
form game

Let N = {1, . . . , n} be the set of the players. Let S be the set of all coalition structures S that the players
can form. Recall that a partition function form game, in the famous sense of Thrall and Lucas [18], is
given by a partition function F which is defined on the set of all coalition structures S and, to each
coalition structure S ∈ S, it assigns a function FS : S → R. For a coalition S ∈ S, the value FS(S) is the
total payoff that the established coalition S will receive.

Given a cooperative game in the strategic form, it is easy to convert it into the partition function form:
Let S = {S1, . . . , Sν} ∈ S be a coalition structure, which the players have formed. Let XS1 , . . . , XSν

and FS1 , . . . , FSν be the strategy spaces and the payoff functions, respectively, of the coalitions. Let us
assume that, for any coalition structure S ∈ S, there exists exactly one Nash equilibrium in the game
among the coalitions. Let [x∗

S1
, . . . , x∗

Sν
] ∈ XS1 × · · · ×XSν be the unique point of the Nash equilibrium.

We put FS(Sι) = FSι(x
∗
S1
, . . . , x∗

Sν
) for ι = 1, . . . , ν. The conversion has been described thus.

The assumption of the existence and uniqueness of the Nash equilibrium for any coalition structure
S ∈ S can be seen quite restrictive. However, it can be met in the case of a Cournot oligopoly for example.
It is not difficult to show [16, 17, 15] that if the price function p of the oligopoly is linear and decreasing
(so p(s) = as + b for some a < 0 and b > 0) and the oligopolists’ cost functions cj are non-increasing
and convex, then the oligopoly possesses exactly one Cournot equilibrium. Moreover, it is an exercise to
show that if the cost functions cj are convex, then, for any coalition S ⊆ N, the coalition’s cost function
cS(xS) = min

{∑
j∈S cj(xj) :

∑
j∈S xj = xS with xj ∈ Xj for j ∈ S

}
is also convex. Hence, there exists

a unique Cournot equilibrium for any coalition structure S ∈ S in the non-cooperative oligopolistic game
among the coalitions.

3 Application of Cooperative TU-Game Solution Concepts to a Partition
Function Form Game

Let us consider a cooperative game with transferable utility (TU) in the coalitional form: Let N =
{1, . . . , n} be the set of the players. A coalition is any subset of the set of the players. Then P(N) = {S :
S ⊆ N }, the potency set of the set N, is the collection of all coalitions which can be formed. Finally, let
v : P(N) → R with v(∅) = 0 be the coalitional (or characteristic) function of the game.

When a coalition S ⊆ N is formed, it receives the amount of v(S) units of some utility. It is assumed
here that the utility is transferable, that is, the members of the coalition S can divide the amount among
themselves.

Let us consider that the players have formed a coalition structure S = {S1, . . . , Sν}. Then v(Sι) is
the payoff that the coalition Sι receives for ι = 1, . . . , ν. Now, the question, which the cooperative game
theory studies, is how will the members of the coalitions Sι divide their payoffs v(Sι) among themselves.

The division of the profit among the players is described by the payoff vector. A payoff vector is any
n-tuple a = [a1, . . . , an] ∈ Rn. The number aj stands for the amount which is allotted to the player
j ∈ N.

Several solution concepts – such as the core [7] or the bargaining set [10] – were proposed to address the
question. Recall that a solution concept is a mapping that, to a given coalitional function v : P(N) → R
with v(∅) = 0 and a given coalition structure S, assigns a set of payoff vectors; sometimes, it assigns
a collection of sets of payoff vectors or just a single payoff vector (in the case of the von Neumann-
Morgenstern solution or the Shapley value, respectively; we shall not deal with these solution concepts
in this paper).

Here, given a coalition structure S, we would like to apply those solution concepts to a partition
function form game F. In the following, we shall recall and contemplate the solution concept of the core
and that of the bargaining set.

Given a coalitional function v : P(N) → R with v(∅) = 0 and a coalition structure S = {S1, . . . , Sν},
the core of the game is the set C =

{
a ∈ Rn :

∑
j∈Sι

aj = v(Sι) for Sι ∈ S and
∑

j∈S aj ≥ v(S) for all

S ∈ P(N) \ S
}
.
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Now, given the coalition structure S = {S1, . . . , Sν}, as above, and recalling the motivation stated
in the Introduction, let us apply the concept of the core to a partition function form game F. We can
indeed formulate the equalities that are a part of the description of the core: let

∑
j∈Sι

aj = FS(Sι) for
Sι ∈ S. The equalities mean that each of the established coalitions Sι divides all its profit v(Sι) among
its members. Nonetheless, how about the inequalities

∑
j∈S aj ≥ v(S) for S ∈ P(N) \ S? Do we need

the inequalities – what do they mean?

The inequalities
∑

j∈S aj ≥ v(S) for S ∈ P(N)\S are the conditions of group stability. Let us consider
a coalition S ∈ P(N) \ S. That is, the coalition does actually not exist, but could potentially be formed.
Should the respective inequality not hold, so we would have

∑
j∈S aj < v(S), then the coalition S would

have a good reason to form because its total payoff v(S) will be higher that the present total payoff∑
j∈S aj of its members. That is, if

∑
j∈S aj < v(S), then the present coalition structure S is instable

and the new coalition S will emerge.

Let us continue that thoughts: When the new coalition S ∈ P(N) \ S emerges, what happens with
the coalition structure S? We assume that a new coalition structure SS , containing S, will form shortly
after the emergence of the coalition S. Which particular coalition structure SS ∈ S will form, i.e., which
coalitions it will contain, depends on the chosen approach. In this paper, we mention the γ-approach and
the δ-approach of Hart and Kurz [6].

If we assume the γ-approach, then the new coalition structure will be SS = {S} ∪ {Sι ∈ S :
Sι ∩ S = ∅ } ∪ { {j} : ∃Sι ∈ S : j ∈ Sι \ S }. In words, the new coalition structure SS contains the
new coalition S, all the formerly established coalitions Sι ∈ S not affected by the departure (Sι ∩ S = ∅),
but the other coalitions (Sι ∩ S ̸= ∅) split into singletons {j}.

If we assume the δ-approach, then the new coalition structure will be SS = {S} ∪ {Sι \ S :
S ̸⊇ Sι ∈ S }. In words, the new coalition structure SS contains the new coalition S, all the formerly
established coalitions Sι ∈ S not affected by the departure (Sι ∩ S = ∅), but the remaining non-empty
parts Sι \ S of the other coalitions (Sι ∩ S ̸= ∅) stay intact.

Now, it is easy to formulate the conditions of group stability for the partition function form game F and
the established coalition structure S. We write

∑
j∈S aj ≥ FSS

(S) for S ∈ P(N)\S. To conclude, we define
the core of the partition function form game F with respect to the coalition structure S = {S1, . . . , Sν}
to be the set C =

{
a ∈ Rn :

∑
j∈Sι

aj = FS(Sι) for Sι ∈ S and
∑

j∈S aj ≥ FSS
(S) for all S ∈ P(N) \ S

}
.

Note that, in the definition of the core, the payoffs FSS
(S′) of the other coalitions S′ ∈ SS \ {S} from

the new coalition structure SS are immaterial to us. However, when a coalition S ∈ P(N) \ S departs,
neither the original definition of the core of a coalitional form game considers what happens with the
payoffs of the other coalitions.

We shall deal with the concept of the bargaining set in the rest of this section. We shall recall the
concept of the imputation, objection, and counterobjection first.

Let a coalitional function v : P(N) → R with v(∅) = 0 and a coalition structure S = {S1, . . . , Sν}
be given. Then the set of the imputations of the game is the set X =

{
a ∈ Rn :

∑
j∈Sι

aj = v(Sι) for

Sι ∈ S and aj ≥ v({j}) for all j ∈ N
}
. As above, the equalities

∑
j∈Sι

aj = v(Sι) mean that each of the
established coalitions Sι divides all its profit v(Sι) among its members. The inequalities aj ≥ v({j}) are
the conditions of individual rationality. For a j ∈ N, the one-player coalition {j} does actually not exist
(unless {j} ∈ S), but, if aj < v({j}), i.e., the player j receives less than the player can obtain by forming
own independent coalition, then the present coalition structure S is instable and the coalition {j} will
emerge.

Consider two distinct players k, l ∈ Sι ∈ S, k ̸= l, from an established coalition Sι. Let a ∈ X be an
imputation under the consideration.

An objection of the player k against l at the imputation a is a pair (K, b) where K ⊆ N is a coalition
such that k ∈ K /∋ l and b ∈ RK is such that

∑
j∈K bj = v(K) and bj > aj for all j ∈ K. That is, the

coalition K does actually not exist, but has the potential to form because all its new members will receive
higher payoffs than under the current division a of the profit. Note that the concept of the objection
does not concern with the payoffs of the players outside the coalition K if the coalition separates.

A counterobjection of the player l to the objection (K, b) of k against l at a is a pair (L, c) where
L ⊆ N is a coalition such that l ∈ L /∋ k and l ∈ RL satisfies

∑
j∈L cj = v(L) with cj ≥ bj for all

j ∈ L ∩K and cj ≥ aj for all j ∈ L \K. So, it is assumed now that the coalition K has really emerged.
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The coalition L does not actually exist, but again has the potential to form because the members from K
as well as the new members from outside K will receive the same or higher payoffs than under the current
division b or a, respectively, of the profit. Note that neither the concept of the counterobjection concerns
with the payoffs of the players outside the coalition L if it forms.

We say that an objection is justified iff there is no counterobjection to it. Finally, the bargaining set
is the set of all imputations a ∈ X such that there does not exist any justified objection at a. That is,
the bargaining set is the set Mi

1 = { a ∈ X : ∀Sι ∈ S ∀k, l ∈ Sι, k ̸= l, ∀(K, b), (K, b) is an objection of
k against l at a, ∃(L, c), (L, c) is a counterobjection of l to (K, b) of k against l at a }.

Now, having understood the concept of the core earlier, it is easy to restate the above definitions
in the setting of a partition function form game F. Let S = {S1, . . . , Sν} be the established coalition
structure. Recall that SS denotes the coalition that will form if the coalition S ∈ P(N) \ S decides to
depart. We can adopt several approaches (such as the γ-approach or the δ-approach) to define SS . (We
put SS = S if S ∈ S.)

We define the set of the imputations to be the set X =
{
a ∈ Rn :

∑
j∈Sι

aj = FS(Sι) for Sι ∈ S and

aj ≥ FS{j}({j}) for all j ∈ N
}
.

Let k, l ∈ Sι ∈ S, k ̸= l, be two distinct players from an established coalition and let a ∈ X be an
imputation. We define an objection of the player k against l at the imputation a to be a pair (K, b) where
K ⊆ N is such that k ∈ K /∋ l and b ∈ RK is such that

∑
j∈K bj = FSK

(K) and bj > aj for all j ∈ K.
And we define a counterobjection of the player l to the objection (K, b) of k against l at a to be a pair
(L, c) where L ⊆ N is such that l ∈ L /∋ k and c ∈ RL satisfies

∑
j∈L cj = F(SK)L(L) with cj ≥ bj for all

j ∈ L ∩K and cj ≥ aj for all j ∈ L \K.

Finally, we define the bargaining set to be the set of all imputations a ∈ X such that there does not
exist any justified objection at a, i.e., to be the set Mi

1 = { a ∈ X : ∀Sι ∈ S ∀k, l ∈ Sι, k ̸= l, ∀(K, b),
(K, b) is an objection of k against l at a, ∃(L, c), (L, c) is a counterobjection of l to (K, b) of k against l
at a }.

4 Conclusions

We considered a cooperative game in the strategic form. The classical solution concepts (the core, the
bargaining set, etc.), being defined for coalitional form games, cannot be applied to that game directly.
Therefore, under the assumption of the existence and uniqueness of the Nash equilibrium, we proposed
in Section 2 to convert the cooperative strategic form into a partition function form game.

We noted in Section 2 that if the price function of a Cournot oligopoly is linear and decreasing and the
cost functions of the oligopolists are convex and non-increasing, then there exists exactly one Cournot
equilibrium, whence the proposed conversion is possible. (See also [9].) It is a motivation of further
research to find more general conditions under which there exists (exactly one) Cournot equilibrium in
the oligopoly.

In Section 3, we showed how to apply the concept of the core and that of the bargaining set, which are
defined for coalitional form games, to a partition function form game. Consequently, they can be applied
to the original cooperative strategic form game (under the assumption of the existence and uniqueness
of the Nash equilibrium), such as the collusive Cournot oligopoly.

For the lack of the space, we did not deal with other popular solution concepts (the von Neumann-
Morgenstern solution, the kernel, the nucleolus, or the Shapley value) in Section 3. They could be applied
analogously.

Note that if the considered partition function form game F is the result of the conversion of a cooper-
ative strategic form game, if S = {N}, i.e., the coalition structure contains only the grand coalition of the
players, and if we assume the γ-approach, then our definition of the core of the partition function form
game yields precisely the concept of the γ-core of Chander and Tulkens [2]. Nonetheless, our approach is
more general in the sense that we define the core for any coalition structure S.

Actually, it was essential for the conversion described in Section 3 to decide upon the approach which
coalition structure SS will form when a coalition S ∈ P(N) \ S departs from S. The application of the
γ-approach, the δ-approach, etc., results in the concept of the γ-core, the δ-core, etc., the concept of the
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γ-bargaining set, the δ-bargaining set, etc., etc. While our concept of the γ-core is more general than
that of [2], as already mentioned, the concept of the γ-bargaining set or the δ-bargaining set is, according
to the author’s best knowledge, new.
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