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Abstract. We focus on rating of non-life insurance contracts. We employ
multiplicative models with basic premium levels and specific surcharge coeffi-
cients for various levels of selected segmentation criteria (rating factors). We
use generalized linear models to describe the probability distribution of to-
tal losses for a contract during one year. In particular, overdispersed Poisson
regression is used to model the expected number of claims during a given pe-
riod and Gamma or Inverse-Gaussian regression are applied to predict average
claim severity. We propose stochastic programming problems with reliabil-
ity type constraints for the surcharge coefficients estimation which take into
account riskiness of each rate cell, prescribed loss ratio and other business re-
quirements. We apply the approach to Motor Third Party Liability (MTPL)
policies.
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1 Introduction

Traditional credibility models in non-life insurance take into account known history of a policyholder and
project it into policy rate, see [8]. However, for new business, i.e. new clients coming for an insurance
policy, the history need not to be known or the information may not be reliable. Thus traditional
approaches to credibility can not be used. We will employ models which are based on settled claims
of new contracts from the previous years. This experience is transfered using generalized linear models
(GLM), see [14], which cover many important regression models and are nowadays widely applied in
insurance, cf. [1, 9, 12, 15]. Expected claim count on a policy during one year and expected claim size
can be explained by various independent variables which can serve as segmentation criteria, e.g. age
and gender of the policyholder and region where he or she lives. Using these criteria and GLM we can
derive surcharges which enable to take into account riskiness of each policy. However, as we will show in
this paper, these coefficients need not to fulfill business requirements, for example restriction on maximal
surcharge. Optimization models must be then employed.

Stochastic programming techniques can be used to solve optimization problems where random co-
efficients appear. In this paper, we will employ formulation based on reliability type constraints such
as chance constraints and the reformulation based on one-sided Chebyshev inequality. The distribution
of the random parts will be represented by compound Gamma-Poisson and Inverse Gaussian-Poisson
distributions with parameter estimates based on generalized linear models. Sensitivity analysis of the
results with respect to the underlying distribution is often proposed, cf. [2, 6, 7, 10, 13].

This paper is organized as follows. In Section 2, we will review definition and basic properties of
generalized linear models. Rate-making approach based on GLM is then proposed in Section 3. In
Section 4, optimization models for rates estimation are introduced which enable to take into account
various business requirements. These models are extended using stochastic programming techniques in
Section 5. Section 6 concludes the paper with an application of the proposed methods to MTPL contracts.
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2 Generalized linear models

In this section, we introduce generalized linear models (GLM) which cover many useful regression models.
GLM are based on the following three building blocks:
1. The dependent variable Yi has distribution from the exponential family with probability density
function

f(y; θi, ϕ) = exp

{
yθi − b(θi)

ϕ
+ c(y, ϕ)

}
, (1)

where b, c are known functions and θi, ϕ are unknown canonical and dispersion parameters.
2. A linear combination of independent variables is considered

ηi =
∑
j

Xijβj , (2)

where βj are unknown parameters and Xij are given values of predictors.
3. The dependency is described by a link function g which is strictly monotonous and twice differentiable

E[Yi] = µi = g−1(ηi). (3)

The most important members of the exponential family are proposed in Table 1 including basic
characteristics which are introduced below. The following relations can be obtained for expectation and
variance under the assumption that b is twice continuously differentiable

E[Y ] = b′(θ), (4)

var(Y ) = ϕb′′(θ) = ϕV (µ), (5)

where the last expression is rewritten using the variance function which is defined as V (µ) = b′′[(b′)−1(µ)].

Distribution Density Dispersion Canonical Mean Variance

f(y; θ, ϕ) param. ϕ param. θ(µ) value µ(θ) function V (µ)

N(µ, σ2) 1√
2πσ

e−
(y−µ)2

2σ2 σ2 µ θ 1

Po(µ) µye−µ

y! 1 log(µ) eθ µ

Γ(µ, ν) 1
Γ(ν)y

(
yν
µ

)ν
e−

yν
µ 1

ν − 1
µ − 1

θ µ2

IG(µ, λ)
√

λ
2πy3 e

−λ(y−µ)
2

2µ2y 1
λ − 1

2µ2
1√
−2θ

µ3

Table 1 Distributions from the exponential family

Maximum likelihood method is used to estimate the parameters of GLM. For overdispersed Poisson
model where the variance need not to be equal to the expected value (dispersion ϕ is not set to 1 but is
estimated from data) quasi-likelihood function must be used. For details see [14].

3 Rate-making using generalized linear models

We denote i0 ∈ I0 the basic segmentation criterion, e.g. tariff groups, and i1 ∈ I1, . . . , iS ∈ IS the other
segmentation criteria which should help us to take into account underwriting risk. We will denote one
risk cell I = (i0, i1, . . . , iS) with I ∈ I = I0 ⊗ I1 ⊗ · · · ⊗ IS . Let LI =

∑NI
n=1XIn denote aggregated

losses over one year for risk cell I where NI is the random number of claims and XIn the random claim
severity. All the variable are assumed to be independent. Then, for the mean and the variance it holds

µI = E[LI ] = E[NI ]E[XI ], (6)

σ2
I = var(LI) = E[NI ]var(XI) + (E[XI ])

2var(NI). (7)

The premium is based on multiplicative model composed from basic premium levels Pri0 and non-
negative surcharge coefficients (rating factors) ei1 , . . . , eiS , i.e.

PrI = Pri0 · (1 + ei1) · · · · · (1 + eiS ). (8)
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Our goal is to find the optimal basic premium levels and coefficient with respect to a prescribed loss ratio
L̂R, i.e. we would like to fulfill the constraints

LI
PrI

≤ L̂R for all I ∈ I. (9)

The goal loss ratio L̂R is usually based on management decision. It is possible to prescribe different loss
ratios for each tariff cell but this is not considered in this paper. However, losses LI are random. The
simplest way is to hedge against expected value of losses E[LI ]. This can be done directly using GLM
with logarithmic link function.

Poisson distribution and Gamma or Inverse Gaussian without intercept are used to estimate param-
eters for expected number of claims and severity. If we use logarithmic link function in both regression
models, then we can get for I = (i0, i1, . . . , iS)

E[NI ] = exp{λi0 + λi1 + · · ·+ λiS}, (10)

E[XI ] = exp{γi0 + γi1 + · · ·+ γiS}, (11)

where λi, γi are estimated coefficients. Thus for the mean loss it holds

E[LI ] = exp{λi0 + γi0 + λi1 + γi1 + · · ·+ λiS + γiS}. (12)

Now, if we set λ̂i = exp(λi)/mini∈I exp(λi) and γ̂i = exp(γi)/mini∈I exp(γi), the basic premium levels
and surcharge coefficient can be estimated as

Pri0 =
exp{λi0 + γi0}

L̂R

S∏
s=1

min
i∈Is

exp(λi)

S∏
s=1

min
i∈Is

exp(γi), (13)

1 + eis = exp{λis + γis}, (14)

Then the constraints (9) are fulfilled in expectation. However, the surcharge coefficient estimates often
violate business requirements, especially they can be too high, as we will show in the numerical study.

4 Optimization problem for rate estimation

The constraints (9) with expectation can be rewritten as

E[Li0,i1,...,iS ] ≤ L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS ). (15)

There can be set business limitation that the highest aggregated risk surcharge is lower than a given
level rmax. We would to minimize basic premium levels and surcharges which are necessary to fulfill the
prescribed loss ratio and the business requirements. This leads to the following nonlinear optimization
problem

min
∏
i0∈I0

Pri0
∏
i1∈I1

(1 + ei1) · · · · ·
∏
iS∈IS

(1 + eiS )

s.t. (16)

L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS ) ≥ E[Li0,i1,...,iS ], (i0, i1, . . . , iS) ∈ I,
(1 + ei1) · · · · · (1 + eiS ) ≤ 1 + rmax,

ei1 , . . . , eiS ≥ 0.

Using logarithmic transform of the decision variables ui0 = ln(Pri0) and uis = ln(1 + eis) and by setting
bi0,i1,...,iS = ln(E[Li0,i1,...,iS ]/L̂R) the problem can be rewritten as linear programming problem which
can be efficiently solved by standard software tools.

min
∑
i0∈I0

ui0 +
∑
i1∈I1

ui1 + · · ·+
∑
iS∈IS

uiS

s.t. (17)

ui0 + ui1 + · · ·+ uiS ≥ bi0,i1,...,iS , (i0, i1, . . . , iS) ∈ I,
ui1 + · · ·+ uiS ≤ ln(1 + rmax),

ui1 , . . . , uiS ≥ 0.
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Overd. Poisson Gamma Inv. Gaussian

Param. Level Est. Std.Err. Exp Est. Std.Err. Exp Est. Std.Err. Exp

tariff group 1 -3.096 0.042 0.045 10.30 0.015 29 778 10.30 0.017 29 765

tariff group 2 -3.072 0.038 0.046 10.35 0.013 31 357 10.35 0.015 31 380

tariff group 3 -2.999 0.037 0.050 10.46 0.013 34 913 10.46 0.015 34 928

tariff group 4 -2.922 0.037 0.054 10.54 0.013 37 801 10.54 0.015 37 814

tariff group 5 -2.785 0.040 0.062 10.71 0.014 44 666 10.71 0.017 44 679

region 1 0.579 0.033 1.785 0.21 0.014 1.234 0.21 0.016 1.234

region 2 0.460 0.031 1.583 0.11 0.013 1.121 0.11 0.014 1.121

region 3 0.205 0.032 1.228 0.06 0.013 1.059 0.06 0.015 1.058

region 4 0.000 0.000 1.000 0.00 0.000 1.000 0.00 0.000 1.000

age 1 0.431 0.027 1.539 - - - - - -

age 2 0.245 0.024 1.277 - - - - - -

age 3 0.000 0.000 1.000 - - - - - -

gender 1 -0.177 0.018 0.838 - - - - - -

gender 2 0.000 0.000 1.000 - - - - - -

Scale 0.647 0.000 13.84 0.273 0.002 0.000

Table 2 Parameter estimates of GLM

5 Stochastic programming problems for rate estimation

In this section, we propose stochastic programming formulations which take into account compound
distribution of random losses not only its expected value. We employ chance constraints for satisfying the
constraints (9). However, chance constrained problems are very computationally demanding in general,
see [3, 4, 5, 6, 11] for various solution approaches and possible reformulations.

If we prescribe a probability level ε for violating the prescribed loss ratio in each tariff cell, we obtain
the following chance (probabilistic) constraints

P (Li0,i1,...,iS ≤ L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS )) ≥ 1− ε, (18)

which can be rewritten using quantile function of Li0,i1,...,iS as

L̂R · Pri0 · (1 + ei1) · · · · · (1 + eiS ) ≥ F−1
Li0,i1,...,iS

(1− ε) (19)

Setting bi0,i1,...,iS = ln[F−1
Li0,i1,...,iS

(1 − ε)/L̂R] formulation (17) can be used. However, it can be very

difficult to compute the quantiles for compound distribution, see [16]. Instead of approximating the
quantiles, we can employ one-sided Chebyshev inequality based on the mean and variance of the the
compound distribution resulting in the constraints

P (LI ≥ PrI) ≤
1

1 + (PrI − µI)2/σ2
I

≤ ε, for PrI ≥ µI , (20)

which can be rewritten as

1− ε
ε

σ2
I ≤ (PrI − µI)2. (21)

This leads to the following reliability constraints

µI +

√
1− ε
ε

σI ≤ PrI . (22)

Setting bI = ln[(µI +
√

1−ε
ε σI)/L̂R] we can employ linear programming formulation (17).
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GLM MV-model SP-model I SP-model II

Level G IG G IG G IG G IG

tariff group 1 1 880 1 879 3 881 3 877 127 164 253 227 7 916 12 112

tariff group 2 2 028 2 029 4 186 4 187 135 565 277 303 8 483 13 209

tariff group 3 2 430 2 431 5 017 5 016 156 748 337 577 9 976 16 003

tariff group 4 2 840 2 841 5 863 5 862 176 535 394 915 11 437 18 715

tariff group 5 3 850 3 851 7 948 7 946 223 966 542 834 14 993 25 627

region 1 2.203 2.201 .241 .240 .464 .470 .293 .358

region 2 .775 .776 .000 .000 .250 .200 .077 .105

region 3 .301 .299 .000 .000 .037 .000 .000 .000

region 4 .000 .000 .000 .000 .000 .000 .000 .000

age 1 .539 .539 .350 .351 .248 .244 .363 .316

age 2 .277 .277 .121 .121 .133 .132 .188 .166

age 3 .000 .000 .000 .000 .000 .000 .000 .000

gender 1 .000 .000 .000 .000 .000 .000 .000 .000

gender 2 .194 .194 .194 .194 .095 .094 .135 .119

Table 3 Optimal rates and segmentation coefficient

6 Numerical example

In this section, we apply proposed approaches to Motor Third Party Liability contracts. We consider
60000 policies which are simulated using characteristics of real MTPL portfolio of one of the leading
Czech insurance companies. The following criteria are used in GLM as the independent variables:
1. tariff group: 5 categories (up to 1000, over 1350, over 1850, over 2500, over 2500 ccm engine),
2. age: 3 categories (18-30, 30-65, 65 and more years),
3. region: 4 categories (over 500 000, over 50 000, over 5 000, up to 5 000 inhabitants),
4. gender: 2 categories (men, women).

We employ the approaches proposed in the previous sections to find the basic premium levels for the
tariff groups and the surcharge coefficients for other criteria. The goal loss ratio for new business is set
to 0.6 and the maximum feasible surcharge to 100 percent. The parameter estimates for overdipersed
Poisson, Gamma (G) and Inverse Gaussian (IG) generalized linear models can be found in Table 2.
Standard errors and exponentials of the coefficient are also included. All variables are significant based on
Wald and likelihood-ratio tests. The parameters of GLM were estimated using SAS GENMOD procedure
[17] and the optimization problems were solved using SAS OPTMODEL procedure [18].

The basic premium levels and surcharge coefficients can be found in Table 3. It is not surprising that
the coefficients which are estimated directly from GLM do not fulfill the business requirements and the
highest possible surcharge is much higher than 100 percent. This drawback is removed by the optimization
problems. The decrease of the surcharge coefficient leads to the increase of the basic premium levels.
We refer to the problem where the expected loss is covered as MV-model. Inappropriate increase of
rates can be observed if we use directly the stochastic programming formulation with the reliability type
constraints based on Chebyshev inequality with ε = 0.1 (SP-model I). This increase is reduced in the
second stochastic programming problem (SP-model II), where lower “weights” (0.1) are assigned to the
variance in formula (22). Stochastic programming models with Inverse Gaussian regression lead to higher
estimates of the basic premium levels because the estimated variance is much higher then for Gamma
regression. Thus, the first model leads to safer estimates however the variance observed in practice
corresponds rather to Gamma model.

7 Conclusion

In this paper, we compared several methods for rating of non-life (MTPL) insurance contracts which
take into account riskiness of various segments. The probability distribution of losses was described by
generalized linear models. Direct application of the estimated coefficient leads to the surcharge coeffi-
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cients which do not fulfill the business requirements. Therefore, optimization models were introduced.
Stochastic programming formulation was employed to consider the distribution of the random losses on
a policy.
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