A note on the choice of a sample of firms for reliable estimation of sector returns to scale

Michal Černý

Abstract. A sector is defined as a family of firms sharing the same Cobb-Douglas production function. Our aim is to estimate the Cobb-Douglas-based returns to scale of the sector. Limited resources allow us to collect data (stock of production factors and production) from a limited number of firms only. We address the question how the sample of firms, used then for estimation of the sector returns to scale, should be selected to achieve a “good” estimate of the returns to scale. (The estimate is “good” if it has low variance.) We propose a three-step procedure for the sample selection problem, adopting a method from the theory of \(c\)-optimal experimental designs. We consider both homoscedastic and heteroscedastic models. We illustrate the approach by examples.

Keywords: sample selection, Cobb-Douglas function, returns to scale, \(c\)-optimal design

JEL classification: C81
AMS classification: 62K05, 91B38, 91G70

1 Introduction, definitions and assumptions

Let \(\Phi_1, \ldots, \Phi_n\) denote production factors. A firm is a \((n+1)\)-tuple of nonnegative real numbers

\[
(y^*, \varphi_1, \ldots, \varphi_n),
\]

where \(y^*\) denotes the level of the firm’s output and \(\varphi_i\) denotes the stock of \(i\)-th production factor available to the firm.

A sector \(S\) is the set

\[
S = \{F_1, \ldots, F_N\},
\]

where \(F_1, \ldots, F_N\) are firms. We also use the notation

\[
F_j = (y_j^*, \varphi_{1j}, \ldots, \varphi_{nj}).
\]

We assume that all the firms of the sector \(S\) share a common Cobb-Douglas production function of the form

\[
\ln y_j = \beta_0 + \sum_{i=1}^{n} \beta_i \ln \varphi_{ij} + \varepsilon_j, \quad j = 1, \ldots, N,
\]

where \(\varepsilon_j\) are independent \(N(0, \sigma^2)\) error terms. In (2) we assume that the value \(y_j^*\) is the observed realization of the random variable \(y_j\).

Returns to scale of the sector \(S\) is the number \(r := \sum_{i=1}^{n} \beta_i\). Recall that the returns to scale are

\[
\begin{align*}
\text{constant} & \quad \text{iff} \quad r = 1, \\
\text{increasing} & \quad \text{iff} \quad r > 1, \\
\text{decreasing} & \quad \text{iff} \quad r < 1.
\end{align*}
\]
1.1 The problem

Our aim is to measure the number \(r \) of the sector \(S \). Of course, due to the presence of the error terms \(\varepsilon \), we can never measure \(r \) exactly. Therefore we are interested in an estimate \(\hat{r} \) of \(r \). We shall use the standard estimator \(\hat{r} = \sum_{i=1}^{n} \hat{\beta}_i \), where \(\hat{\beta} = (\hat{\beta}_0, \ldots, \hat{\beta}_n)^T \) is the standard OLS estimator of (3). Then we can, for example, test the null hypothesis

\[
 r = 1
\]

using the standard \(t \)-test or \(F \)-test.

Assume that \(N \), the size of the sector, is large. In order to obtain as precise estimates of \(r \) as possible, it is desirable to collect data (2) for all firms \(F_1, \ldots, F_N \). However, this process is usually costly. Usually only limited resources are available to us; with these resources we are able to collect data from a limited number of firms only. We have arrived at the main question of the paper: assume that we are able to collect data from only \(m \ll N \) firms. Which firms from the sector \(S \) should be included in the selected sample \(S' \) (of cardinality \(m \)) in order the value \(\hat{r} \), estimated from the sample \(S' \), be as precise as possible?

The relevance of the question is motivated by the following example.

1.2 Example

Assume that \(n = 2 \) and \(\Phi_1 = \text{labor} \) and \(\Phi_2 = \text{capital stock} \). Assume that the sector \(S \) of \(N = 12 \) firms is governed by the model (3) with

\[
 \beta_0 = 0, \quad \beta_1 = 0.5, \quad \beta_2 = 0.6, \quad \sigma = 0.1.
\]

Then \(r > 1 \) and the returns to scale of the sector \(S \) are increasing.

Assume that our resources allow us to gather data from \(m = 6 \) firms only. We would like to choose the sample of 6 firms in the way that \(\text{se}(\hat{\beta}_1 + \hat{\beta}_2) \) is minimal, where “se” stands for standard error. In that case, \(r \) is estimated with the best possible precision. This is important since the standard error of \(\hat{r} \) being low, the \(t \)-test for the hypothesis \(r = 1 \) is strong. (Recall that the test statistic is of the form \(\frac{\hat{r}-1}{\text{se}(\hat{r})} \))

We can write the model (3) in the usual form \(y = X\beta + \varepsilon \), where \(\beta = (\beta_0, \beta_1, \beta_2)^T \). With this notation we have

\[
 \text{se}(\hat{\beta}_1 + \hat{\beta}_2) = \sigma \cdot \sqrt{\frac{c^T (X^T X)^{-1} c}{n}}
\]

where \(c = (0, 1, 1)^T \).

We have \(\binom{12}{6} = 924 \) possibilities for the choice of the sample \(S' \) of 6 firms out of 12 total; denote the choices as \(S'_1, \ldots, S'_{924} \). Let \(X_1, \ldots, X_{924} \) denote the corresponding \(X \)-matrices. Define

\[
 \tau_i := \sigma \cdot \sqrt{\frac{c^T (X^T X_i)^{-1} c}{n}}, \quad i = 1, \ldots, 924.
\]

Let the choices \(S'_1, \ldots, S'_{924} \) be ordered in the way that \(\tau_1 \leq \cdots \leq \tau_{924} \). Figure 1 shows values of \(\tau_i \) against \(i \). The best possible choice is

\[
 S'_1 = \{F_1, F_2, F_3, F_6, F_8, F_9\} \quad \text{with} \quad \tau_1 = 0.0435,
\]

while the worst possible choice is

\[
 S'_{924} = \{F_4, F_5, F_7, F_8, F_{11}, F_{12}\} \quad \text{with} \quad \tau_{924} = 0.2064.
\]

In the case (6), \(t \)-test for the null hypothesis (4) will probably not reject, though the hypothesis is not true. Hence, with the choice \(S'_{924} \) we can arrive at an incorrect conclusion that returns to scale are constant. On the other hand, if we choose the sample \(S'_1 \), we have a much higher chance that the \(t \)-test will reject, which is a correct conclusion. In general: the better value \(\tau_i \), the stronger the \(t \)-test is. And, if we choose the sample of firms “in the best possible way” and the \(t \)-test does not reject, we have a strong evidence that \(r = 1 \) indeed.

This example shows that before we start collecting data, it is reasonable to ask which firms of the sector \(S \) are likely to contribute to the precision of the estimator of \(\hat{r} \) more than others.
2 Our approach

The question leads us to the theory of optimum experimental designs. Indeed, the sample which minimizes the variance of \hat{r} can be seen as a case of c-optimal design: our aim is minimization of $se(c^T \beta)$, where $c = (0, 1, \ldots, 1)^T$ and $\beta = (\beta_0, \beta_1, \ldots, \beta_n)^T$.

The problem is that we know nothing about the sector S in advance. We adopt the assumption that we are able to gather information on representants of the sector S. Each representant should represent a group of firms in the sector S with similar stock of production factors. (Said more precisely, a representant R should be either a real or fictitious firm such that it is reasonable to expect that in the sector S there are enough real firms with the stock of production factors similar to R.) Then we restrict ourselves to the representants.

We find an optimal design over the representants; this will give us guidance from which groups of firms it should be suitable to collect final data.

We illustrate the approach by example. Let φ_{1j} denote the capital stock of j-th representant and let φ_{2j} denote the labor stock of j-th representant. Assume that we know that the sector S contains the following groups with the following representants:

<table>
<thead>
<tr>
<th>group</th>
<th>type</th>
<th>representant</th>
</tr>
</thead>
<tbody>
<tr>
<td>group 1</td>
<td>small capital-intensive firms</td>
<td>$R_1 = (\varphi_{11} = 5, \ varphi_{21} = 1)$</td>
</tr>
<tr>
<td>group 2</td>
<td>small labor-intensive firms</td>
<td>$R_2 = (\varphi_{12} = 1, \ varphi_{22} = 5)$</td>
</tr>
<tr>
<td>group 3</td>
<td>medium capital-intensive firms</td>
<td>$R_3 = (\varphi_{13} = 20, \ varphi_{23} = 10)$</td>
</tr>
<tr>
<td>group 4</td>
<td>medium labor-intensive firms</td>
<td>$R_4 = (\varphi_{14} = 15, \ varphi_{24} = 22)$</td>
</tr>
<tr>
<td>group 5</td>
<td>large capital-intensive firms</td>
<td>$R_5 = (\varphi_{15} = 35, \ varphi_{25} = 20)$</td>
</tr>
<tr>
<td>group 6</td>
<td>large labor-intensive firms</td>
<td>$R_6 = (\varphi_{16} = 20, \ varphi_{26} = 42)$</td>
</tr>
</tbody>
</table>

In our example we will write

$$\mathcal{X} := \left\{ \begin{pmatrix} 1 \\ \ln \varphi_{11} \end{pmatrix}, \ldots, \begin{pmatrix} 1 \\ \ln \varphi_{16} \end{pmatrix} \right\}. \quad (8)$$

The meaning of this set will be explained in the next section.
2.1 Some notions from the theory of c-optimal designs

In the theory of experimental design, the set \mathcal{X} is usually referred to as experimental domain. Its interpretation is as follows. Assume the linear regression model
\[
y = X\beta + \varepsilon
\]
(9)
with independent disturbances ε, which are homoscedastic with variance σ^2. We are given a nonzero vector c of parameters and our aim is to select the rows of X in the way that $\text{se}(c^T\beta)$ is minimal. We are restricted by the fact that each row x^T of X must fulfill $x \in \mathcal{X}$. Said otherwise, we can make measurements only in the points from the experimental domain \mathcal{X} and our aim is to select those points which minimize the variance of $c^T\beta$.

Assume that $\mathcal{X} = \{x_1, \ldots, x_M\}$ and that we have the regression model (9) with ν observations, where the matrix X is of the form
\[
X = (x_1, x_1, \ldots, x_1) \cdot \underbrace{(x_2, x_2, \ldots, x_2)}_{\nu \xi_1 \text{ times}} \cdots \underbrace{(x_M, x_M, \ldots, x_M)}_{\nu \xi_M \text{ times}}^T.
\]
(10)
The vector $\xi := (\xi_1, \ldots, \xi_M)^T$ is called design — it simply says that we are making $100\xi_1\%$ observations in the point x_1, $100\xi_2\%$ observations in the point x_2 etc.

We can define the number $\text{var}_c(\xi)$, called c-variance of the design ξ, implicitly using the equation
\[
\text{var}(c^T\beta) = \frac{\sigma^2}{\nu} \cdot \text{var}_c(\xi),
\]
where $\tilde{\beta} = (X^TX)^{-1}X^Ty$ with X given by (10). (Here, $^{-1}$ might stand for the matrix pseudoinverse.) It is easy to see that the number $\text{var}_c(\xi)$ does depend on the design ξ, but it depends neither on σ^2 nor on the number of observations ν. Hence it is a good measure of the contribution of the design ξ to the total variance of the estimator $c^T\beta$.

All designs form the simplex $\Sigma := \{\xi: \xi \geq 0, 1^T\xi = 1\}$. Our task is to find the design with minimal c-variance. Thus we are to solve the optimization problem
\[
\min\{\text{var}_c(\xi): \xi \in \Sigma\}.
\]
Its solution is called c-optimal design.

Definition 1. The Elfving set is the set $\mathcal{E} := \text{convexhull}(\mathcal{X} \cup -\mathcal{X})$, where $-\mathcal{X} = \{-x : x \in \mathcal{X}\}$. □

The following theorem, called Elfving’s Theorem (see [4]), is a fundamental result in the theory of c-optimal designs.

Theorem 1. Let c be a nonzero vector and let $\mathcal{X} = \{x_1, \ldots, x_M\}$. Let $\omega^* = \max \{\omega \in \mathbb{R} : \omega \cdot c \in \mathcal{E}\}$ and $x^* = \omega^*c$. Let u_1, \ldots, u_M and v_1, \ldots, v_M be nonnegative numbers such that
\[
x^* = \sum_{i=1}^M u_i x_i - \sum_{i=1}^M v_i x_i
\]
and
\[
\sum_{i=1}^M (u_i + v_i) = 1.
\]
Then $(u_1 + v_1, \ldots, u_M + v_M)^T$ is the c-optimal design over \mathcal{X}. □

In other words, if we write the point x^* as a convex combination of the points $x_1, \ldots, x_M, -x_1, \ldots, -x_M$, then the coefficients of the convex combination determine the c-optimal design.

Harman and Jurik [5] observed that Elfving’s Theorem leads to a linear programming problem.

Theorem 2. Let $\Xi = \{x_1, \ldots, x_M\}$. Let u^*, v^*, ω^* be the solution of the linear program
\[
\max \{\omega \in \mathbb{R} : \Xi(u - v) = \omega \cdot c, \ 1^T(u + v) = 1, \ u \geq 0, \ v \geq 0\}.
\]
(11)
Then $\xi := u^* + v^*$ is the c-optimal design. □

More on the theory of optimal designs can be found in [2], [6], [7]. Computational issues are dealt with in [1], [3].
2.2 The example continued

We now apply Elfving’s Theorem to the “experimental domain” \(\mathcal{X} \) given by (8). (The form of the model (3) shows why the logarithms are present in (8).) We set

\[
\Xi = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
\ln 5 & \ln 1 & \ln 20 & \ln 35 & \ln 20 & \\
\ln 1 & \ln 5 & \ln 10 & \ln 22 & \ln 20 & \ln 42 \\
\end{pmatrix}
\]

and

\[c = (0, 1, 1)^T.\]

Solving the linear program (11) we get the optimal design \(\xi = (\xi_1, \ldots, \xi_6)^T \) with

\[
\xi_1 = 0.13, \quad \xi_2 = 0.37, \quad \xi_3 = \xi_4 = \xi_5 = 0, \quad \xi_6 = 0.5.
\]

This shows that we should compose the sample as follows:

- 13% of the observations should be collected from the group represented by the representant \(R_1 \),
- 37% of the observations should be collected from the group represented by the representant \(R_2 \),
- 50% of the observations should be collected from the group represented by the representant \(R_6 \).

If our budget is limited to, say, \(m = 100 \) firms, then it is reasonable to collect data from

- 13 small capital-intensive firms,
- 37 small labor-intensive firms and
- 50 large labor-intensive firms.

2.3 The heteroscedastic case

In the analysis of production functions it is often reasonable to assume heteroscedasticity. Let us consider an example with a heteroscedasticity model where the standard error of disturbances is proportional to \(\sqrt{\varphi_1 j \varphi_2 j} \) (again, \(\varphi_1 j \) denotes the capital stock of \(j \)-th firm and \(\varphi_2 j \) denotes the labor stock of \(j \)-th firm). Then we can write the model (3) in the form

\[
\ln y_j = \beta_0 + \beta_1 \ln \varphi_1 j + \beta_2 \ln \varphi_2 j + \delta_j \sqrt{\varphi_1 j \varphi_2 j},
\]

where \(\delta_j \) are independent and homoscedastic. A simple transformation yields

\[
\frac{\ln y_j}{\sqrt{\varphi_1 j \varphi_2 j}} = \beta_0 \cdot \frac{1}{\sqrt{\varphi_1 j \varphi_2 j}} + \beta_1 \cdot \frac{\ln \varphi_1 j}{\sqrt{\varphi_1 j \varphi_2 j}} + \beta_2 \cdot \frac{\ln \varphi_2 j}{\sqrt{\varphi_1 j \varphi_2 j}} + \delta_j,
\]

which is a homoscedastic model, and we can apply Elfving’s Theorem. Using again the representants from (7), we set

\[
\Xi = \begin{pmatrix}
1/5 & 1/5 & 1/20 & 1/35 & 1/20 & 1/42 \\
\ln 1/5 & \ln 1/5 & \ln 1/20 & \ln 1/35 & \ln 1/20 & \ln 1/42 \\
\end{pmatrix}
\]

and \(c^T = (0, 1, 1). \) Solution of the linear program (11) yields

\[
\xi_1 = 0.1, \quad \xi_2 = 0.04, \quad \xi_3 = 0.86, \quad \xi_4 = \xi_5 = \xi_6 = 0.
\]

So, if we are restricted to \(m = 100 \) observations, it is reasonable to collect data from

- 10 small-sized capital intensive firms,
- 4 small-sized labor-intensive firms and
- 86 medium-sized capital-intensive firms.
3 Conclusion

The difference between (12) and (13) shows that the homoscedasticity/heteroscedasticity assumption is important. (This is not surprising.) We thus suggest that it could be reasonable to perform the analysis in three steps:

- **Step 1.** Make a rough screening of the sector S to
 - identify groups of firms and their representants,
 - determine whether heteroscedasticity is present, and if so, estimate a suitable model of heteroscedasticity.

- **Step 2.** Using the data from Step 1, apply the method of Section 2.2 (if heteroscedasticity is not present) or Section 2.3 (if heteroscedasticity is present): find the optimal design ξ using (11).

- **Step 3.** Choose firms according to the design ξ.

Acknowledgements

The work was supported by the project P403/12/1947 of the Czech Science Foundation.

References

