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Abstract. A sector is defined as a family of firms sharing the same Cobb-
Douglas production function. Our aim is to estimate the Cobb-Douglas-based
returns to scale of the sector. Limited resources allow us to collect data (stock
of production factors and production) from a limited number of firms only. We
address the question how the sample of firms, used then for estimation of the
sector returns to scale, should be selected to achieve a “good” estimate of the
returns to scale. (The estimate is “good” if it has low variance.) We propose a
three-step procedure for the sample selection problem, adopting a method from
the theory of c-optimal experimental designs. We consider both homoscedastic
and heteroscedastic models. We illustrate the approach by examples.

Keywords: sample selection, Cobb-Douglas function, returns to scale, c-
optimal design

JEL classification: C81
AMS classification: 62K05, 91B38, 91G70

1 Introduction, definitions and assumptions

Let Φ1, . . . ,Φn denote production factors. A firm is a (n+ 1)-tuple of nonnegative real numbers

(y∗, φ1, . . . , φn), (1)

where y∗ denotes the level of the firm’s output and φi denotes the stock of i-th production factor available
to the firm.

A sector S is the set
S = {F1, . . . , FN},

where F1, . . . , FN are firms. We also use the notation

Fj = (y∗j , φ1j , . . . , φnj). (2)

We assume that all the firms of the sector S share a common Cobb-Douglas production function of the
form

ln yj = β0 +
n∑

i=1

βi lnφij + εj , j = 1, . . . , N, (3)

where εj are independent N(0, σ2) error terms. In (2) we assume that the value y∗j is the observed
realization of the random variable yj .

Returns to scale of the sector S is the number r :=
∑n

i=1 βi. Recall that the returns to scale are

constant

increasing

decreasing

 iff


r = 1,

r > 1,

r < 1.
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1.1 The problem

Our aim is to measure the number r of the sector S. Of course, due to the presence of the error terms
εj , we can never measure r exactly. Therefore we are interested in an estimate r̂ of r. We shall use the

standard estimator r̂ =
∑n

i=1 β̂i, where β̂ = (β̂0, . . . , β̂n)
T is the standard OLS estimator of (3). Then

we can, for example, test the null hypothesis
r = 1 (4)

using the standard t-test or F -test.

Assume that N , the size of the sector, is large. In order to obtain as precise estimates of r as possible,
it is desirable to collect data (2) for all firms F1, . . . , FN . However, this process is usually costly. Usually
only limited resources are available to us; with these resources we are able to collect data from a limited
number of firms only. We have arrived at the main question of the paper: assume that we are able to
collect data from only m ≪ N firms. Which firms from the sector S should be included in the selected
sample S ′ (of cardinality m) in order the value r̂, estimated from the sample S ′, be as precise as possible?

The relevance of the question is motivated by the following example.

1.2 Example

Assume that n = 2 and Φ1 = labor and Φ2 = capital stock. Assume that the sector S of N = 12 firms is
governed by the model (3) with

β0 = 0, β1 = 0.5, β2 = 0.6, σ = 0.1.

Then r > 1 and the returns to scale of the sector S are increasing.

Assume that our resources allow us to gather data from m = 6 firms only. We would like to choose
the sample of 6 firms in the way that se(β̂1 + β̂2) is minimal, where “se” stands for standard error. In
that case, r is estimated with the best possible precision. This is important since the standard error of r̂
being low, the t-test for the hypothesis r = 1 is strong. (Recall that the test statistic is of the form r̂−1

ŝe(r̂) .)

We can write the model (3) in the usual form y = Xβ + ε, where β = (β0, β1, β2)
T. With this

notation we have

se(β̂1 + β̂2) = σ ·
√
cT(XTX)−1c,

where c = (0, 1, 1)T.

We have
(
12
6

)
= 924 possibilities for the choice of the sample S ′ of 6 firms out of 12 total; denote the

choices as S ′
1, . . . ,S ′

924. Let X1, . . . ,X924 denote the corresponding X-matrices. Define

τi := σ ·
√
cT(XT

i Xi)−1c, i = 1, . . . , 924.

Let the choices S ′
1, . . . ,S ′

924 be ordered in the way that τ1 ≤ · · · ≤ τ924. Figure 1 shows values of τi
against i. The best possible choice is

S ′
1 = {F1, F2, F3, F6, F8, F9} with τ1 = 0.0435, (5)

while the worst possible choice is

S ′
924 = {F4, F5, F7, F8, F11, F12} with τ924 = 0.2064. (6)

In the case (6), t-test for the null hypothesis (4) will probably not reject, though the hypothesis is not
true. Hence, with the choice S ′

924 we can arrive at an incorrect conclusion that returns to scale are
constant. On the other hand, if we choose the sample S ′

1, we have a much higher chance that the t-test
will reject, which is a correct conclusion. In general: the better value τi, the stronger the t-test is. And, if
we choose the sample of firms “in the best possible way” and the t-test does not reject, we have a strong
evidence that r = 1 indeed.

This example shows that before we start collecting data, it is reasonable to ask which firms of the
sector S are likely to contribute to the precision of the estimator of r̂ more than others.
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Figure 1 Sequence τ1, . . . , τ924.

2 Our approach

The question leads us to the theory of optimum experimental designs. Indeed, the sample which minimizes
the variance of r̂ can be seen as a case of c-optimal design: our aim is minimization of se(cTβ̂), where

c = (0, 1, . . . , 1)T and β̂ = (β̂0, β̂1, . . . , β̂n)
T.

The problem is that we know nothing about the sector S in advance. We adopt the assumption that
we are able to gather information on representants of the sector S. Each representant should represent a
group of firms in the sector S with similar stock of production factors. (Said more precisely, a representant
R should be either a real or fictitious firm such that it is reasonable to expect that in the sector S there
are enough real firms with the stock of production factors similar to R.) Then we restrict ourselves to
the representants.

We find an optimal design over the representants; this will give us guidance from which groups of
firms it should be suitable to collect final data.

We illustrate the approach by example. Let φ1j denote the capital stock of j-th representant and let
φ2j denote the labor stock of j-th representant. Assume that we know that the sector S contains the
following groups with the following representants:

group type representant

group 1 small capital-intensive firms R1 = (φ11 = 5, φ21 = 1)

group 2 small labor-intensive firms R2 = (φ12 = 1, φ22 = 5)

group 3 medium capital-intensive firms R3 = (φ13 = 20, φ23 = 10)

group 4 medium labor-intensive firms R4 = (φ14 = 15, φ24 = 22)

group 5 large capital-intensive firms R5 = (φ15 = 35, φ25 = 20)

group 6 large labor-intensive firms R6 = (φ16 = 20, φ26 = 42)

(7)

In our example we will write

X :=


 1

lnφ11

lnφ21

 , . . . ,

 1

lnφ16

lnφ26


 . (8)

The meaning of this set will be explained in the next section.
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2.1 Some notions from the theory of c-optimal designs

In the theory of experimental design, the set X is usually referred to as experimental domain. Its
interpretation is as follows. Assume the linear regression model

y = Xβ + ε (9)

with independent disturbances ε, which are homoscedastic with variance σ2. We are given a nonzero
vector c of parameters and our aim is to select the rows of X in the way that se(cTβ̂) is minimal. We
are restricted by the fact that each row xT of X must fulfill x ∈ X . Said otherwise, we can make
measurements only in the points from the experimental domain X and our aim is to select those points
which minimize the variance of cTβ̂.

Assume that X = {x1, . . . ,xM} and that we have the regression model (9) with ν observations, where
the matrix X is of the form

X = (x1,x1, . . . ,x1︸ ︷︷ ︸
νξ1 times

; x2,x2, . . . ,x2︸ ︷︷ ︸
νξ2 times

· · · ;xM ,xM , . . . ,xM︸ ︷︷ ︸
νξM times

)T. (10)

The vector ξ := (ξ1, . . . , ξM )T is called design — it simply says that we are making 100ξ1% observations
in the point x1, 100ξ2% observations in the point x2 etc.

We can define the number varc(ξ), called c-variance of the design ξ, implicitly using the equation

var(cTβ̂) =
σ2

ν
· varc(ξ),

where β̂ = (XTX)−1XTy with X given by (10). (Here, −1 might stand for the matrix pseudoinverse.)
It is easy to see that the number varc(ξ) does depend on the design ξ, but it depends neither on σ2 nor
on the number of observations ν. Hence it is a good measure of the contribution of the design ξ to the
total variance of the estimator cTβ̂.

All designs form the simplex Σ := {ξ : ξ ≥ 0, 1Tξ = 1}. Our task is to find the design with minimal
c-variance. Thus we are to solve the optimization problem

min{varc(ξ) : ξ ∈ Σ}.

Its solution is called c-optimal design.

Definition 1. The Elfving set is the set E := convexhull(X ∪ −X ), where −X = {−x : x ∈ X}.

The following theorem, called Elfving’s Theorem (see [4]), is a fundamental result in the theory of
c-optimal designs.

Theorem 1. Let c be a nonzero vector and let X = {x1, . . . ,xM}. Let ω∗ = max{ω ∈ R : ω · c ∈ E} and
x∗ = ω∗c. Let u1, . . . , uM and v1, . . . , vM be nonnegative numbers such that

x∗ =
M∑
i=1

uixi −
M∑
i=1

vixi

and
M∑
i=1

(ui + vi) = 1.

Then (u1 + v1, . . . , uM + vM )T is the c-optimal design over X .

In other words, if we write the point x∗ as a convex combination of the points x1, . . . ,xM ,−x1, . . . ,−xM ,
then the coefficients of the convex combination determine the c-optimal design.

Harman and Juŕık [5] observed that Elfving’s Theorem leads to a linear programming problem.

Theorem 2. Let Ξ = (x1, . . . ,xM ). Let u∗,v∗, ω∗ be the solution of the linear program

max{ω ∈ R : Ξ(u− v) = ω · c, 1T(u+ v) = 1, u ≥ 0, v ≥ 0}. (11)

Then ξ := u∗ + v∗ is the c-optimal design.

More on the theory of optimal designs can be found in [2], [6], [7]. Computational issues are dealt
with in [1], [3].
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2.2 The example continued

We now apply Elfving’s Theorem to the “experimental domain” X given by (8). (The form of the model
(3) shows why the logarithms are present in (8).) We set

Ξ =

 1 1 1 1 1 1

ln 5 ln 1 ln 20 ln 15 ln 35 ln 20

ln 1 ln 5 ln 10 ln 22 ln 20 ln 42


and

c = (0, 1, 1)T.

Solving the linear program (11) we get the optimal design ξ = (ξ1, . . . , ξ6)
T with

ξ1 = 0.13, ξ2 = 0.37, ξ3 = ξ4 = ξ5 = 0, ξ6 = 0.5. (12)

This shows that we should compose the sample as follows:

• 13% of the observations should be collected from the group represented by the representant R1,

• 37% of the observations should be collected from the group represented by the representant R2,

• 50% of the observations should be collected from the group represented by the representant R6.

If our budget is limited to, say, m = 100 firms, then it is reasonable to collect data from

• 13 small capital-intensive firms,

• 37 small labor-intensive firms and

• 50 large labor-intensive firms.

2.3 The heteroscedastic case

In the analysis of production functions it is often reasonable to assume heteroscedasticity. Let us consider
an example with a heteroscedasticity model where the standard error of disturbances is proportional to√
φ1jφ2j (again, φ1j denotes the capital stock of j-th firm and φ2j denotes the labor stock of j-th firm).

Then we can write the model (3) in the form

ln yj = β0 + β1 lnφ1j + β2 lnφ2j + δj
√
φ1jφ2j ,

where δj are independent and homoscedastic. A simple transformation yields

ln yj√
φ1jφ2j

= β0 ·
1

√
φ1jφ2j

+ β1 ·
lnφ1j√
φ1jφ2j

+ β2 ·
lnφ2j√
φ1jφ2j

+ δj ,

which is a homoscedastic model, and we can apply Elfving’s Theorem. Using again the representants
from (7), we set

Ξ =


1√
5·1

1√
1·5

1√
20·10

1√
15·22

1√
35·20

1√
20·42

ln 5√
5·1

ln 1√
1·5

ln 20√
20·10

ln 15√
15·22

ln 35√
35·20

ln 20√
20·42

ln 1√
5·1

ln 5√
1·5

ln 10√
20·10

ln 22√
15·22

ln 20√
35·20

ln 42√
20·42


and cT = (0, 1, 1). Solution of the linear program (11) yields

ξ1 = 0.1, ξ2 = 0.04, ξ3 = 0.86, ξ4 = ξ5 = ξ6 = 0. (13)

So, if we are restricted to m = 100 observations, it is reasonable to collect data from

• 10 small-sized capital intensive firms,

• 4 small-sized labor-intensive firms and

• 86 medium-sized capital-intensive firms.
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3 Conclusion

The difference between (12) and (13) shows that the homoscedasticity/heteroscedasticity assumption is
important. (This is not surprising.) We thus suggest that it could be reasonable to perform the analysis
in three steps:

• Step 1. Make a rough screening of the sector S to

– identify groups of firms and their representants,

– determine whether heteroscedasticity is present, and if so, estimate a suitable model of het-
eroscedasticity.

• Step 2. Using the data from Step 1, apply the method of Section 2.2 (if heteroscedasticity is not
present) or Section 2.3 (if heteroascedasticity is present): find the optimal design ξ using (11).

• Step 3. Choose firms according to the design ξ.
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