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Abstract. Solutions of portfolio optimization problems are often influenced
by model misspecifications or by errors due to approximation, estimation and
incomplete information. The obtained results, recommendations for the risk
and portfolio manager should be then carefully analyzed. We shall focus on
output analysis and stress testing with respect to uncertainty or perturbations
of input data for the Markowitz mean-variance model with a general polyhedral
convex set of considered portfolios and we shall discuss its robust versions.
Possible extensions to general mean-risk efficient portfolios will be delineated.
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1 The Markowitz model

In conclusions of his famous paper [14] on portfolio selection, Markowitz stated that “what is needed
is essentially a ‘probabilistic’ reformulation of security analysis”. He developed a model for portfolio
optimization in an uncertain environment under various simplifications. It is a static, single period
model which assumes a frictionless market. It applies to small rational investors whose investments
cannot influence the market prices and who prefer higher yields to lower ones and smaller risks to larger
ones. Let us recall the basic formulation: The composition of portfolio of I assets is given by weights
of the considered assets, xi, i = 1, . . . , I,

∑
i xi = 1. The unit investment in the i-th asset provides

the random return ρi over the considered fixed period. The assumed probability distribution of the
vector ρ of returns of all assets is characterized by a known vector of expected returns Eρ = µ and by
a fixed covariance matrix V = [cov(ρi, ρj), i, j = 1, . . . , I] whose main diagonal consists of variances of
individual returns. This allows to quantify the “yield from the investment” as the expectation µ(x) =∑
i xiµi = µ>x of its total return and the “risk of the investment” as the variance of its total return,

σ2(x) =
∑
i,j cov(ρi, ρj)xixj = x>V x. According to the assumptions, the investors aim at maximal

possible yields and, at the same time, at minimal possible risks – hence, a typical decision problem with
two criteria, “max” {µ(x),−σ2(x)} or “min” {−µ(x), σ2(x)}. The mean-variance efficiency introduced
by Markowitz is fully in line with general concepts of multiobjective optimization. Accordingly, mean-
variance efficient portfolios can be obtained by solving various optimization problems such as

min
x∈X
{−λµ>x+ 1/2x>V x} (1)

where the value of parameter λ ≥ 0 reflects investor’s risk aversion. Another possibility, favored in the
practice, is to minimize the portfolio variance subject to a lower bound for the total expected return, i.e.

min
x∈X

x>V x subject to µ>x ≥ k (2)

with parameter k, or to maximize the expected return under a constraint on portfolio variance

max
x∈X

µ>x subject to x>V x ≤ v. (3)

In the classical theory, the set X = {x ∈ RI :
∑
i xi = 1} without nonnegativity constraints, which

means that short sales are permitted. Under this simplification explicit forms of optimal solutions can
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be obtained, e.g. the optimal solution of (1) x(µ, V ;λ) is linear in µ. We shall allow for general convex
polyhedral sets X . To trace out the mean-variance frontier, one may solve (1), (2) or (3) for many different
values of λ, k, v respectively, or to rely on parametric programming techniques, cf. [16]. Notice that the
same set of mean-variance solutions is obtained when using

√
x>V x at the place of x>V x.

It was the introduction of risk into the investment decisions which was the exceptional feature of
this model and a real breakthrough, and the Markowitz model became a standard tool for portfolio
optimization. However, there are many questions to be answered: Modeling the random returns to get
their expectations, variances and covariances, the choice of the value of λ, etc. From the point of view of
optimization procedures, inclusion of nonnegativity or linear regulatory constraints does not cause any
serious problems. This however does not apply to minimal transaction unit constraints which introduce
0-1 variables. In the interpretation and application of the results one has to be aware of the model
assumptions (not necessarily fulfilled in real-life), namely, that it is a one-period model based on the buy-
and-hold strategy applied between the initial investment and the horizon of the problem so that decisions
based on its repeated use over more that one period can be far from a good, suboptimal dynamic decision,
cf. [3]. See also [17] and references therein for a discussion and multiperiod extensions.

2 Output analysis for the Markowitz mean-variance model

The optimal solution x(µ, V ;λ) and the optimal value ϕ(µ, V ;λ) of (1) depend on µ, V and on the chosen
value of λ, and at the same time, one can hardly assume full knowledge of these input values. The impact
of errors in expected returns, variances and covariances on the optimal return ϕ of the obtained portfolio
was investigated, e.g. in [5]: The program (1) was solved repeatedly with perturbed selected input
parameters, ceteris paribus, and the cash equivalent loss was computed for each run. The results of this
simulation study indicate that the errors in expected values are more influential than those in the second
order moments. Inspired by the cited results we shall deal first with sensitivity analysis of the optimal
composition of the portfolio and of the optimal value of (1) on the input values of the expected returns
µ of the risky assets and we shall suggest to complement results based on parametric programming by
stochastic sensitivity analysis.

Assume that the covariance matrix V in (1) is a known positive definite matrix, the set X a nonempty
convex polyhedron with nondegenerated vertices, λ > 0 a chosen parameter value, and that the expected
return µ is a parameter of the quadratic program (1). The covariance matrix V and the parameter λ
will not be indicated in our denotation of the optimal value and of the optimal solution of (1). Under
the above assumptions, for each µ, there is a unique optimal solution x(µ) of (1) and the optimal value
function ϕ(µ) := minx∈X [−λµ>x + 1

2x
>V x] is a concave function. This follows from a more general

statement which is a direct consequence of the inequality valid for minimum of a sum:

Proposition 1. Assume that the objective function f : X × Rq → R in the parametric program

min
x∈X

f(x, p)

is linear in the parameter p, the set X is a non-empty convex set which does not depend on p, and an
optimal solution x(p) exists for all p. Then the optimal ϕ(p) is a concave function on Rq.

The set of feasible solutions X of the quadratic program (1) can be decomposed into finitely many
relatively open facets that are identified by indices of active constraints; interior of X and vertices of X
are special cases of these facets. The parametric space Rn of vectors p := λµ can be decomposed into
finitely many disjoint stability sets linked with the facets by the requirement that for all p belonging
to a stability set, the optimal solutions x(p) of the quadratic program (1) lie in the same facet. It is
possible to prove (see [2]) that x(p) is continuous on the whole space Rn, is linear on each stability set
and differentiable on its interior.

If, however, p belongs to the boundary of a stability set, x(p) looses the differentiability property
and is only directionally differentiable. The optimal value function ϕ(p) is piecewise linear – quadratic
differentiable concave function of p. These results explain the observed cases of a relative stability of
the optimal value and of an extremal sensitivity of optimal solutions on small changes of the vector µ
of expected returns: Whenever the initial value of p = λµ belongs to the boundary of a stability set,
arbitrarily small changes in µ can cause transition to one of the neighboring stability sets. It means not
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only that some other assets are included into portfolio, but different small changes can cause transition
to different stability sets. As a result, the composition of the optimal portfolio is regarded unstable. At
the same time, the change of the minimal value of (1) is small for small changes of µ.

Illustrative example. Consider the quadratic program minimize −p1x1− p2x2 + 1/2x2
1 +x1x2 +x2

2

on the set X = {x1 ≥ 0, x2 ≥ 0 : x1 + x2 ≤ 1} which corresponds to the risk-adjusted expected
return problem (1) with 3 assets where short sales are not permitted. Decomposition of X into facets
Σk, k = 1, . . . , 7 is depicted in Figure 1a and the corresponding stability sets σ(Σk), k = 1, . . . , 7 are
drawn on Figure 1b. Consider point p1 = p2 = 1 on Figure 1b. For this parameter value, the optimal

II. DISCRETE TIME STOCHASTIC DECISION MODELS 201

these facets. The parametric space Rn of vectors p := λr can be also decomposed
into finitely many disjoint stability sets linked with the facets by the requirement
that for all p belonging to a stability set, the optimal solutions x(p) of the qua-
dratic program (1)–(2) lie in the same facet. It is possible to prove (see [5]) that
x(p) is continuous on Rn, is linear on each stability set and differentiable on its
interior. If, however, p belongs to the boundary of a stability set, x(p) looses the
differentiability property and is only directionally differentiable. The optimal value
function ϕ(p) is a piecewise linear–quadratic convex function of p. Thanks to the
assumption that V is positive definite, the optimal value function ϕ is differentiable
on the whole parameter space provided that the vectors of coefficients of the active
constraints of (2) are linearly independent; see e.g. [62], Theorem 2.4.5. These
results explain the observed cases of a stability of the optimal value and, at the
same time, of an extremal sensitivity of optimal solutions to small changes of the
vector r of expected returns: Whenever the initial value of p = λr belongs to the
boundary of a stability set, arbitrarily small changes in r can cause transition to
one of the neighboring stability sets. Hence, for each type of transition different
assets are included into portfolio and the composition of the optimal portfolio is
regarded unstable. At the same time, the change of the maximal value of (1) is
small for small changes of r. Notice that similar situations can be observed also
in case of changes of the parameter λ (i.e., when tracing the mean-variance effi-
cient frontier) but they are more easy to take in as the changes concern only a
scalar parameter. There exist some generalizations of the cited results to the case
of V positive semidefinite and bounded X , however, the fact that from the point of
view of quadratic programming there might be multiple optimal solutions indicates
clearly the limitations.

7.2.1 Simple Clarifying Example. Consider the quadratic program
max [p1x1+p2x2− 1

2x
2
1−x1x2−x2

2] on the set X = {x1, x2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.
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Figure 12: Set of feasible solutions X

Set X can be decomposed into relatively open facets Σ1, . . . ,Σ7, see Figure 12.
The corresponding stability sets σ(Σk), k = 1, . . . , 7, for parameters p1, p2 are drawn
on Figure 13.
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Figure 13: Stability sets

Consider p1 = p2 = 1. For this parameter value, the optimal solution is the
vertex Σ3, however, a small change of parameter values causes moving the optimal
solution into the adjacent facets Σ6 or Σ7 or into the interior Σ1 of X . The cor-
responding changes of the optimal value and of the first component of the optimal
solution are illustrated for fixed p2 = 1 and p1 ≥ 0 on Figure 14.
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Figure 14: ϕ(p) and x1(p) for p2 = 1

Differentiability of ϕ is important for obtaining the form of the approximate
probability distribution of the optimal returns of the portfolio, which are based on
estimates of the true expected returns r obtained by a known appropriate statistical
method. Such results are useful for constructing approximate confidence intervals
for the true optimal value of (1)–(2).

7.2.2 Theorem. Assume that V is positive definite and that the linear indepen-
dence condition is fulfilled at the point of the true optimal solution x(r) of (1)–(2).
Let rν be an asymptotically normal estimate of the true expectation r,

(3)
√
ν (rν − r) ∼ N (0,Σ) .

Figure 1: a. Decomposition of the set X / b. Stability sets

solution is vertex Σ3, however, a small change of parameter values causes moving the optimal solution
into the adjacent facets Σ6 or Σ7 or into the interior Σ1 of X . The corresponding changes of the optimal
value and of the first component of the optimal solution are illustrated for fixed p2 = 1 in Figure 2.
A similar situation can be observed also in case of changes of the parameter λ (i.e., when tracing the
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Differentiability of ϕ is important for obtaining the form of the approximate
probability distribution of the optimal returns of the portfolio, which are based on
estimates of the true expected returns r obtained by a known appropriate statistical
method. Such results are useful for constructing approximate confidence intervals
for the true optimal value of (1)–(2).

7.2.2 Theorem. Assume that V is positive definite and that the linear indepen-
dence condition is fulfilled at the point of the true optimal solution x(r) of (1)–(2).
Let rν be an asymptotically normal estimate of the true expectation r,

(3)
√
ν (rν − r) ∼ N (0,Σ) .

Figure 2: ϕ(p) and x1(p) for p2 = 1

mean-variance efficient frontier) but they are more easy to take in as the changes concern only a scalar
parameter. Moreover, there is λ1 > 0 such that all parameter values λ > λ1 belong to the same stability
set characterized by fixed indices of positive components of efficient portfolio x(λ) and that they are
linear functions of λ on (λ1,∞).

There exist generalizations of the cited results to the case of V positive semidefinite and bounded
convex polyhedral set X , hovewer, the fact that from the point of view of quadratic programming there
might be multiple optimal solutions indicates clearly the limitations.

Sample based return averages µν are frequently used at the place of the true expectation µ0. From
asymptotic normality of µν , asymptotic normality of the sample optimal value function follows and
asymptotic confidence intervals for the optimal value can be constructed.

The optimal, mean-variance efficient solutions x(µ) are continuous, piece-wise linear, directionally
differentiable on certain nonoverlapping convex stability sets in RI ; cf. [2]. Their continuity is sufficient
for consistency of the optimal solutions based on a consistent estimate of the true expected return.
Except for the simple case of X = {x ∈ RI :

∑
i xi = 1}, x(µ) are not differentiable. It means that their

asymptotic normality holds true only if the true expected return µ0 lies in the interior of a stability set.
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We refer to [8] for details.

3 Stress testing the parameter values

A special type of output analysis appears under the name stress testing in the context of quantification
of losses or risks which may appear under special, mostly extremal circumstances. Usually, the model
is solved or its solution evaluated for an alternative input. We shall indicate now how it is possible to
quantify such “stress testing” results.

To stress the parameter values in the Markowitz model we shall apply the contamination technique of
robust statistics. In its basic form it requires that the objective function, say f(x, p), is linear with respect
to the parameter p and that the set of feasible decisions is fixed, hence, Proposition 1 applies. Changes of
parameter p are modeled as pt = (1− t)p+ tp̂ where p̂ is a selected parameter perturbation to be tested
and 0 ≤ t ≤ 1 is a scalar parameter. This approach can be applied to (1) with µt = (1− t)µ+ tµ̂, Vt =
(1 − t)V + tV̂ and to (2) or (3) when a known expected return µ or a fixed covariance matrix V are
assumed. To stress separately correlations one can adapt a suggestion of [13]: The covariance matrix
can be written as V = DCD with the diagonal matrix D of “volatilities” (standard deviations of the
marginal distributions) and the correlation matrix C. Changes in the covariances may be then modeled
by “stressing” the correlation matrix C by a positive semidefinite stress correlation matrix Ĉ

C(γ) = (1− γ)C + γĈ (4)

with parameter γ ∈ [0, 1]. This type of perturbation of the initial quadratic program allows us to apply
the related stability results of [2] to the perturbed problem (2)

min
x∈X

x>DC(γ)Dx, γ ∈ [0, 1] : (5)

where the constraint µ>x ≥ k has been incorporaded into the definition of X . Proposition 1 can be
specified as

Proposition 2. Under the above assumptions, the optimal value ϕ(γ) of (5) is concave and continuous
in γ ∈ [0, 1] and the optimal solution x(γ) is a continuous vector in the range of γ where C(γ) is positive
definite.

Application of [12], Theorem 17, provides the form of the directional derivative

ϕ′(0+) = x>(0)DĈDx(0)− ϕ(0).

Contamination bounds

(1− γ)x>(0)DCDx(0) + γx>(1)DĈDx(1) ≤ min
x∈X

x>DC(γ)Dx

≤ (1− γ)x>(0)DCDx(0) + γx>(0)DĈDx(0)

quantify the effect of the considered change in the input data on the optimal value ϕ(γ) of portfolio;
cf. [10]. In a similar way, one can quantify the influence of stressing parameters µ,C or µ, V in (1) or
parameter µ in (3).

4 Worst-case analysis for the Markowitz mean-variance model

Incomplete knowledge of input data, i.e. of expected returns µ and covariance matrix V may be also
approached via the worst-case analysis or robust optimization, cf. [11], [15], [18]. The idea is to hedge
against the worst possible input belonging to a prespecified uncertainty or ambiguity set U . We shall
denote M, V considered uncertainty sets for parameters µ and V and will assume that U =M×V. For
(1) this means to solve

min
x∈X

max
(µ,V )∈U

{−λµ>x+ 1/2x>V x}. (6)

The worst-case reformulations of (2) and (3) are

min
x∈X

max
V ∈V

x>V x subject to min
µ∈M

µ>x ≥ k, (7)
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min
x∈X

min
µ∈M

µ>x subject to max
V ∈V

x>V x ≤ v, (8)

respectively. Consider for example U described by box constraints 0 ≤ µ
i
≤ µi ≤ µi, i = 1, . . . , I, V ≤

V ≤ V componentwise and such that V is positive definite. With X = {x ∈ RI : xi ≥ 0 ∀i, ∑
i xi = 1}

the inner maximum in (6) is attained for µi = µ
i
∀i and V = V . The robust mean-variance portfolio is

the optimal solution of
min
x∈X
{−λµ>x+ 1/2x>V x}.

We refer to [11] for a survey of various choices of uncertainty sets for the Markowitz model.

5 General mean-risk portfolios

Let us proceed now to static mean-risk models of the Markowitz type with random returns ρ whose
probability distribution P does not depend on the selected portfolio composition. (Recall the assumption
of a small investor in the Markowitz model.) The yield from the portfolio x is again the expectation
EP ρ

>x, the risk is understood now as a function R which assigns a real number to the uncertain outcome
ρ>x for the decision x. The value of functionR should not depend on the realization of the uncertain return
ρ but it depends on the decision and on the probability distribution P ; accordingly we shall denote it
R(x, P ). It should posses some natural properties such as monotonicity, translation equivariance, positive
homogeneity and subadditivity for to be called coherent; see [1]. The well-known risk measure Value at
Risk (VaR), which is not coherent in general, and the coherent Conditional Value at Risk (CVaR) are
special cases of R.

For a known probability distribution P of returns the problems corresponding to (1), (2), (3) are

min
x∈X
{−λEP ρ>x+R(x, P )}, (9)

min
x∈X

R(x, P ) subject to EP ρ>x ≥ k, (10)

max
x∈X

EP ρ
>x subject to R(x, P ) ≤ v. (11)

The form (9) with a probability independent set of feasible decisions is more convenient for applications
of quantitative stability analysis techniques, whereas risk management regulations ask frequently for
satisfaction of risk constraints with a fixed limit v displayed in (11). Moreover, (11) is favored in practice:
solving it for various values of v one obtains directly the corresponding points [µ>x(v), v] on the mean-
risk efficient frontier. Numerical tractability of the mean-risk problems depends on the choice of the
risk measure and on the assumed probability distribution P. Programs (9)–(11) are convex for convex
risk measures R(•, P ), such as CVaR; see [6], [10]. As the probability distribution P is fully known
only exceptionally, there are two main tractable ways for analysis of the output regarding changes or
perturbation of P – quantitative stability analysis with respect to changes of P by stress testing via
contamination, see [6], [7], [9], [10], or the worst-case analysis with respect to all probability distributions
belonging to an uncertainty set P which will be briefly discussed below.

The “robust” counterpart of (9) is a straightforward transcription of (6):

min
x∈X

max
P∈P
{−λEP ρ>x+R(x, P )} (12)

whereas for (11) we have

max
x∈X

min
P∈P

EP ρ
>x subject to R(x, P ) ≤ v for all P ∈ P or max

P∈P
R(x, P ) ≤ v. (13)

For the Markowitz model, one in fact considers an uncertainty set of probability distributions charac-
terized by fixed expectations and covariance matrices; the Markowitz model does not distinguish among
probability distributions belonging to this set. Accordingly, let us specify the class P as the class of prob-
ability distributions identified by fixed moments µ, V known from the Markowitz model. Thanks to the
assumed linearity of random returns explicit formulas for the worst-case CVaR and VaR can be derived,
cf. [4], and according to Theorem 2.2 of [18] the portfolio composition x ∈ X satisfies the worst-case
constraint on VaR iff it satisfies the worst-case CVaR constraint.
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In general, for convex, compact classes P defined by moment conditions and for fixed x, the maxima
in (12), (13) are attained at extremal points of P. Then under modest assumptions it is possible to pass
in (12) and in (13) to discrete distributions P ∈ P. This convenient property carries over also to R(x, P )
that are convex in P.

Whereas expected utility functions or CVaR(x, P ) are linear in P, various popular risk measures are
not even convex in P : the variance is concave in P , the mean absolute deviation is neither convex nor
concave in P. This means that extensions of the minimax approach to risk functionals nonlinear in P are
carried through only under special circumstances.
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