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Abstract. Nowadays, there are a lot of methods and techniques to analyze and 

forecast time series. One of the most used is methodology based on autoregressive 

integrated moving average (ARIMA) model by Box and Jenkins [1]. This method 

uses historical data of univariate time series to analyze its own trend and forecast 

future cycle. 

Time series are often affected by special events such as legislative activities, policy 

changes, environmental regulations, and similar events, which we shall refer to as 

intervention events. You can incorporate one or more time series in a model to 

predict the value of another series, by using a transfer function. Transfer functions 

can be used both to model and forecast the response series and to analyze the impact 

of the intervention.   

The general transfer function model employed by the ARIMA procedure was 

discussed by Box and Tiao [2]. When an ARIMA model includes other time series 

as input variables, the model is sometimes referred to as an ARIMAX model. 

Pankratz [4] refers to the ARIMAX model as dynamic regression. 

In this article, we use both ARIMA and ARIMAX approaches to analyze and 

forecast macroeconomic time series and decide whether more complex ARIMAX 

model brings so much better results than simple ARIMA model. 
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1 ARIMA model 

An „AutoRegressive Integrated Moving-Average“ (ARIMA) model belongs to the one of the most used 

methodology approaches for analyzing time series. This is mostly because of it offers great flexibility in 

analyzing various time series and because of achieving accurate forecasts, too. Its other advantage is that for 

analyzing single time series it uses its own historical data. 

The ARIMA model methodology was first introduced by Box and Jenkins in 1976 [1], and ARIMA models 

are often referred to as Box-Jenkins models. This approach analyzes univariate stochastic time series, i. e. error 

term of this time series. For this to be possible, the analyzed time series must be stationary. This means that the 

mean, variance and covariance of the series are all constant over time. However, most economic and financial 

time series show trends over time. Stationarity is important because, if the series is non-stationary, all the typical 

results of the classical regression analysis are not valid. Regressions with non-stationary series may have no 

meaning and are therefore called „spurious“. Long-term forecasts of a stationary series will converge to the 

unconditional mean of the series. 

ARIMA model (with seasonal terms) can be written as follows: 

yt = φ1yt-1 + φ2yt-2 + ... + φpyt-p + Φ1yt-s + Φ2yt-2s + ... + ΦPyt-Ps + 

     + at - θ1at-1 - θ2at-2 - ... - θqat-q - Θ1at-s - Θ2at-2s - ... - ΘQat-Qs        (1) 

 

Using backshift (lag) operator we can rewrite (1): 

 φp(B)ΦP(B
s
)zt = θq(B)ΘQ(B

s
)at   (2) 

where:  

zt = (1-B)
d
(1-B

s
)

D
ln(yt) 

φp(B)    – nonseasonal operator of autoregressive process AR(p) 
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θq(B)    – nonseasonal operator of moving average MA(q) 

ΦP(B
s
) – seasonal operator of autoregressive process AR(P) 

ΘQ(B
s
) – seasonal operator of moving average MA(Q) 

at – error term (white noise) 

s – orders of season (B
s
yt = yt-s) 

d, D – nonseasonal and seasonal orders of differencing (integration) 

Then, using more parsimonious notation, we can rewrite (2) as follows: 

 ARIMA (p, d, q)(P, D, Q)s,     (3) 

where: p, P – number of autoregressive parameters 

       q, Q – number of moving average parameters 

The Box-Jenkins approach is iterative three-stage modeling approach – identification, estimation and 

diagnostic checking, and finally forecasting. 

In the identification stage, the researcher visually examines the time plot of the series autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Plotting each observation of the series against time 

t provides useful information concerning outliers, missing values and structural breaks in the data. The analyzed 

time series must be stationary. Once stationarity has been achieved (logarithm and/or differences), the next step 

is to identify the parameters of the model, i. e. AR and MA orders examining ACF and PACF.  

In the estimation stage, each of the tentative models is estimated and the various coefficients are examined. 

The estimated models are compared using the Akaike information criterion and the Schwarz Bayesian criterion 

and model with the smallest criterion is chosen to get the parsimonious model. The main approaches to fitting 

Box–Jenkins models are non-linear least squares and maximum likelihood estimation. 

In the diagnostic checking stage, the goodness of fit of the model is examined. Residuals should meet white 

noise assumptions, i. e. autocorrelation, homoskedasticity and normality is tested. If these assumptions are not 

satisfied, one needs to fit a more appropriate model. Care must be taken here to avoid overfitting. 

The main function of ARIMA models is forecasting. Their forecasting ability can be considered when 

compared to actual time series. 

2 ARIMAX – transfer function model 

Assume two time series denoted Yt and Xt, which are both stationary. Then, the transfer function model (TFM) 

can be written as follows: 

 Yt = C + ν(B)Xt + Nt  (4) 

where: 

Yt is the output series (dependent variable), 

Xt is the input series (independent variable), 

C is constant term, 

Nt is the stochastic disturbance, i.e. the noise series of the system that is independent of the input series. 

ν(B)Xt is the transfer function (or impulse response function), which allows X to influence Y via a distributed lag. 

B is backshift operator, thus we can write  

 ν(B)Xt = (ν0 + ν1B +  ν2B
2
 + ...)Xt,  (5) 

When Xt and Nt are assumed to follow ARMA model, equation (4) is known as the ARMAX model. This 

ARMAX model is quite different from ARMA model, because we work with two different series Xt and Yt - 

output series Yt is related to input series Xt. 

Coefficients νj are called impulse response weights, which could be positive or negative. The larger the 

absolute value of any weight νj is, the larger is the response of Yt to a change in  

Xt-j. Output series might not react immediately to a change in input series, thus some initial ν weights may be 

equal to zero. The number of ν weights equal to zero is called dead time and is denoted as b (Rublikova, Marek 

[5]). 

Theoretically, the transfer function ν(B)Xt has an infinite number of coefficients. Then, we can write transfer 

function as the rational polynomial distributed lag model of finite order as the ratio of a low order polynomials in 

B:  

  ν����� =
ω�����

	

δ
���
��  (6) 
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where ωh(B) = ω0 +  ω1B + … + ωhB
h
; δr(B) = 1 - δ1B - … - δrB

r
; h is the number of terms plus one of the 

independent variable included; r is the number of terms of the dependent variable included and b is dead time 

mentioned above already. 

Disturbance series Nt can be written in the form of an autoregressive integrated moving average model as 

follows: 

 �� =
θ���Θ����

φ���Φ�����
�����
�����
��  (7) 

 

where at is zero mean and normally distributed white noise.  

Then, substitute (5) with maximum lag denoted by K (free-form distributed lag model) and (7) into (4), we 

have transfer function model in its full formula: 

 �� = � + ν��� + ν
���
 + ν����� +⋯+ ν����� +
θ���Θ����

φ���Φ�����
�����
�����
��   (8) 

Construction of TFM is similar iterative process as construction of univariate Box-Jenkins ARIMA model, 

i.e. identification, estimation and diagnostic chcecking. After checking there is no feedback from earlier values 

of the output to current values of the input, we can start with the linear transfer identification method (LTF) to 

find out the orders (b, r, h) of a rational form transfer function (Pankratz [4]). First, we specify free-form 

distributed lag model in which K is chosen according to the analyst judgment and then we specify low order for 

disturbance series Nt. Nonlinear least square method can be used to estimate parameters. After estimation of the 

model, we have to check estimated disturbance series for stationarity by means of sample autocorrelation 

function and sample partial autocorrelation function. If the disturbance series is not stationary, then it is 

necessary to difference input and output accordingly. If the disturbance is stationary, then we are going to the 

stage 2 where we may use preliminary estimated impulse response weights to choose the orders (b, r, h) of 

one/few tentative rational form transfer function(s) to represent ν(B). We can identify the orders (b, r, h) by 

visually comparing the estimated impulse response function with some common theoretical functions. If the 

linear transfer function model is adequate then we can compute forecasts. There are several diagnostic checks to 

decide whether the model is adequate based on the residuals which should be independent as well as input series, 

e.g. cross-correlation check and/or autocorrelation check.  

It is good practice to build an ARIMA model for both the output and the input series before attempting to 

build a transfer function model (Rublikova, Marek [5]) 

3 Transfer function model for gross domestic product per capita 

In this applied part, we are going to build a transfer function model (TFM) for gross domestic product per capita 

and unemployment rate. We assume that a change in unemployment rate will affect trend in gross domestic 

product per capita which will lead to a significant change. 

3.1 ARIMA model 

First, we are going to find best fitted ARIMA model for output and input series. Output series is gross domestic 

product per capita (GDPpc). Analyzed quarterly data cover the period from 2000 up to 2011 in thousand EUR 

constant prices. The source of data is Slovstat database. The plotted series is shown at Fig. 1. Because the series 

is nonstationary, we use difference and seasonally difference to reach the stationarity. After study of ACF and 

PACF of stationary series, we identify the right model as ARIMA (0,1,0)(1,1,0) written as (standard error is in 

parentheses): 

 (1-B)(1-B
4
)(1+0.3057B

4
)HDPpct = at  (9) 

 (0.1441) 

Unemployment rate (UR) is used as input series. It covers quarterly data of period from 2000 up to 2011 in 

percents. The source of data is Slovstat database, too. The plotted series UR is shown at Fig. 2. The series is 

nonstationary and just difference is appropriate to transform to its  stationarity. Then, according to its ACF and 

PACF we identify the fitted model as ARIMA (0,1,1)(2,0,0): 

 

 (1-B)(1-0.5894B
4
-0.3545B

8
)URt = (1+0.7235B)at  (10) 

 (0.1397) ( 0.1381) (0.1116) 
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Fig. 1 Gross domestic product per capita in 1000 

EUR constant prices, 2000Q1 – 2011Q4  

(Source: Slovstat database) 

Fig. 2 Unemployment rate in %, 2000Q1 – 2011Q4 

(Source: Slovstat database) 

3.2 Transfer function model (ARIMAX model) 

Now, we apply earlier described LTF method to build transfer function model describing relationship between 

GDP per capita and unemployment rate. First step is to estimate free-form distributed lag model with input and 

output series not differenced. We assume maximum lag K=8 and noise series Nt is approximated by AR(1). 

Estimated noise model ��t = yt - ��t is stationary. Only statistically significant weight was ν0. Therefore, the 

transfer function model has the simplest form with parameters (0, 0, 0) and transfer function is ν(B) = ω0.  

Next step is to build ARIMA model for noise series Nt. After long identification and estimation, we choose 

the model in the form ARIMA (0,0,1)(0,0,1): 

 Nt = (1-θ1B)(1-Θ1B
4
)at  (11) 

Now, we can estimate transfer function model in the form 

 

 Yt = C + ν0Xt + (1-θ1B)(1-Θ1B
4
)at  (12) 

 GDPpct = 3.8983 - 0.0975URt + (1-0.7756B)(1-0.6049B
4
)at  (13) 

  (0.2144)   (0.0139)   (0.1000)   (0.1361) 

 

All parameters are statistically significant. Residuals meet white noise assumptions. To check the adequacy of 

the fitted transfer function model, we calculate the cross-correlation function between TFM residuals and 

ARIMA model for unemployment rate residuals (estimated above). No values of the cross-correlation function 

are statistically significant, therefore residuals are not autocorrelated and fitted transfer function model is 

adequate. The R-Squared statistic indicates that the model as fitted explains 92.7% of the variability in gross 

domestic product per capita. 

3.3 Forecasts of gross domestic product per capita by ARIMA and ARIMAX model 

Now, we will compute not only forecasts by fitted transfer function model (ARIMAX) above but also the 

forecasts for individual series of GDP per capita given by the fitted ARIMA model to compare accuracy of both 

methods. To compute the TFM forecasts, we need to know the data of input variable unemployment rate in the 

time of forecasts which we can calculate using ARIMA model methodology.  

Quarterly forecasts for 2012 calculated by both methods are in Table 1. Both fitted models assume slight 

growth of GDP per capita in quarters of 2012. We can see that forecasted data by ARIMAX model are a little 

lower than simple univariate ARIMA model data.  

 

Model 2012Q1 2012Q2 2012Q3 2012Q4 

ARIMA 2.7961 3.0100 3.1961 3.1131 

ARIMAX 2.6171 2.5531 2.6824 2.7212 

Tab. 1 Forecasts of gross domestic product per capita by ARIMA and ARIMAX in 2012 (in thousand EUR 

constant prices) 

(Source: Authors) 
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Graphical comparison of raw data of GDP per capita and fitted data and forecasts by both methodologies are at 

Fig. 3.  

 

 
Fig. 3 Raw data of GDP per capita, ARIMA fitted data, ARIMAX fitted data and forecasts 

(Source: Authors) 

As we can see, ARIMA model fits the trend of GDP per capita slightly better than ARIMAX model. ARIMA 

model mean absolute percentage error is 1.77 % and ARIMAX is 3.78 %, and root mean square error is 0.0653 

respectively 0.1162. 

4 Conclusions 

In this article, we built the transfer function model (ARIMAX) for gross domestic product per capita as an output 

series and unemployment rate as an input series. Fitted model was adequate and residuals were white noise. The 

R-Squared statistic indicated that the model as fitted explains 92.7% of the variability in gross domestic product 

per capita. Next, we calculated quarterly forecasts for 2012 and compared them with forecasts calculated by 

simple univariate ARIMA model for GDP per capita. Forecasts were slightly different and both assumed growth 

of GDP per capita. ARIMA model mean absolute percentage error and root mean square error were lower than 

ARIMAX. ARIMA model seems to be a little accurate than ARIMAX. 
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