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Abstract. In many real-world decision-making situations and preferential votings 
objects or alternatives are ranked by experts from the best to the worst with the goal 
to achieve a group consensus. This setting is called ordinal (consensus) ranking 
problem (OCRP). Many methods were proposed for the solution of OCRP with an 
important class of the so called permutation methods such as the consensus ranking 
model (CRM) or hybrid distance-based ideal-seeking consensus ranking model 
(DCM), which seek the consensus in the space of all permutations of the order n. 
The main limitation of these methods is that the number of permutations of order n 
grows as n!, making solving this problem virtually impossible for n larger than 10. 
The aim of the article is to propose a new technique which can reduce the number of 
permutations the methods‘ need to process, lowering their computational complexity 
and enabling them to deal with permutations of higher orders. The technique is 
based on the ‘distance theorem’ derived in the theoretical part of the paper. This 
theorem postulates the upper limit on the distance between one of the initial 
preferences (called median) and the consensus. In the empirical part of the paper, 
Monte Carlo simulations are carried out to examine the technique’s behaviour, 
applicability and efficiency. 
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1 Introduction 
In business, politics, entertainment or sport we encounter situations involving preferential votings of objects or 
alternatives. Often, such preferences have structure of ordinal ranking, where objects are assigned their rank 
order from the 1st to the nth place. This is common especially when a set of experts compile various TOP 10, 25, 
100, etc., or when some alternatives in a decision-making situation have to be sorted from the best to the worst. 
In this setting, finding a group consensus is one of the most important and also difficult tasks, which dates back 
to the late 18th century and works by Borda [2] and Condorcet [3]. As shown by Arrow in [1] it is impossible to 
find a unique solution (consensus) to all preference ranking problems while meeting a set of some reasonable 
criteria (e.g. non-dictatorship). 

Problems, which have a solution, can be solved through many different methods proposed over the last 
centuries (see [2, 3]) as well as recently ([5, 10, 13]). Probably the most familiar methods are Condorcet’s simple 
majority rule and Borda-Kendall’s method of marks. Modern methods treat preferences as vectors, permutations 
or matrices, and use distance functions defined on vector or matrix spaces ([4, 11]), but generally with different 
results ([6, 13]). Important class of these methods constitute so called permutation methods such as the 
consensus ranking model (CRM) of Cook and Kress [5] or the hybrid distance-based ideal-seeking consensus 
ranking model (DCM) by Tavana et al. [13]. These methods seek the consensus in the space of all permutations 
of order n. The consensus is defined as a preference (permutation) with the minimal sum of distances to 
preferences of all DMs. The limitation of these methods is that the number of permutations of order n grows as 
n!, making solving this problem virtually impossible for n larger than 10. 

The aim of the article is to propose a new technique for permutation methods which can significantly reduce 
the number of permutations in consideration, thus reducing their computational complexity. The technique is 
based on the ‘distance theorem’ derived in the theoretical part of the paper. In the empirical part, Monte Carlo 
simulations of the technique are carried out to examine its behaviour, applicability and efficiency. 
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The article is organized as follows. In Section 2, basic concepts are introduced. In Section 3, the distance 
theorem is derived and the technique based on this theorem is presented in Section 4. Numerical examples are 
provided in Section 5 and computer simulations are performed in Section 6. Conclusions close the article. 

2 Concepts and notation 
Let a set of n alternatives be ranked by a set of k decision makers (DMs). Each DM provides the ranking of all 
alternatives from the 1st to the nth position. Hence, the number of decision makers is equal to the number of 
preference rankings, i.e., each DM provides only one ranking. All rankings have the same weight. Rankings of 
alternatives, such as (A, C, D, B), can be converted into (numeric) permutations by a simple correspondence: 

1≡A , 2≡B , etc., leading to the permutation (1, 3, 4, 2). In this paper, permutations are denoted iπ , { }ki ,..,1∈  
and the set of all permutations of order n as Sn. 

Because permutations of different DMs might be equal, the set of DMs’ permutations is in fact a multiset 
(bag) (A, m) with the underlying set of elements A and the multiplicity function NAm →: . 

Furthermore, we assume that there exist a metric function d on the set A. Generally, a metric on a set A is 
a function d : A × A → R, which satisfies the following conditions: 
1. d(x, y) ≥ 0 
2. d(x, y) = 0 if and only if x = y 
3. d(x, y) = d(y, x) 
4. d(x, z) ≤ d(x, y) + d(y, z), for x, z, y ∈  A. 

Some appropriate metrics for permutations (derived from metric functions on vector spaces) used in this 
paper are listed below. 
• Kendall’s tau distance ([7, 8]): the number of transposition of adjacent pairs of digits necessary to turn one 

permutation into other. Also known as bubble-sort distance. 
• Lp metric: distance of two permutations iπ  and jπ  is given as: 
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 For p = 1 we obtain the Manhattan metric and for p = 2 the Euclidean metric. 
• As permutations can be converted into permutation matrices, also metric functions on matrix spaces 

analogous to (1) are available. Such l1 metric is used in DCM and CRM methods. 

Definition 1. Let (A, m) be a multiset of permutations given by all DMs, and d be a metric function. Then: 
• Distance between two permutations Ai ∈π  and Aj ∈π  is denoted ( )jid ππ , . 

• Median is a permutation Am ∈π  with the lowest overall distance ( )∑
=

=
k

i
imdM
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,ππ  to all permutations 

from A. Generally, there can be more than one median. 

• Consensus is a permutation nr S∈π  with the lowest overall distance ( )∑
=

k

i
ird

1

,ππ to all permutations from 

A. A consensus can belong to A as well, and there can be more than one consensus too. 

n / k 0 1 2 3 4 5 6 7 8 9 10 
1 1           
2 1 1          
3 1 2 2 1        
4 1 3 5 6 5 3 1     
5 1 4 9 15 20 22 20 15 9 4 1 
10 1 9 44 155 440 1068 2298 4489 8095 13640 21670 
… … … … … … … … … … … … 

            

n / k (continued) 11 12 13 14 15 16 17 18 19 20 … 
10 32683 47043 64889 86054 110010 135853 162337 187959 2011089 230131 … 
… … … … … … … … … … … … 

Table 1 Distribution of permutations of order n (vertical axis) with k inversions (horizontal axis) (source: [9]). 
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As settings with more than one median might cause problems, we also define the well-defined problems and 
ill-defined problems: 

Definition 2. Well-defined problem with ordinal preference rankings is a problem where there is precisely one 
median in a bag A, otherwise it is an ill-defined problem. 

For better understanding of the presented concepts and the distance theorem in the next section we provide 
several simple examples in Section 5. We already know that there are n! permutations of order n, and the 

maximum distance is 
2

)1( −nn . Another important feature of permutations is their distribution with regard to the 

number of transpositions of adjacent pairs (inversions) to a given permutation, see Table 1. The distribution is 
symmetric and also asymptotically normal. Generating functions can be found in [9] and [12]. 

3 The distance theorem 
Intuitively, a consensus seems to be ‘close’ to the median, as median is a permutation ‘in the middle’ of DMs’ 
preferences. If this is true, it suffices to search through permutations close to the median (with only a few 
inversions), while permutations more distant can be safely ruled out. This, in turn, might drastically narrow the 
space Sn we search through. In this section, we provide a theoretical upper boundary on the distance between 
a median and a consensus using an arbitrary metric function d. 

Theorem 1. Let mπ  be a median permutation and let rπ  be a consensus permutation, let k be the number of 

permutations and let ( )∑
=

=
k

i
imdM

1

,ππ . Then ( )
k
Md rm

2, ≤ππ . 

Proof: According to Definition 1, the median is the permutation which satisfies 
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triangle inequality in the definition of a metric we get: 

 ( ) ( ) ( )riimrm ddd ππππππ ,,, +≤ { }ki ,..,1∈∀ ,  

and after summation over all i we obtain: 
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after dividing k we finally get to the result: ( )
k
Md rm

2, ≤ππ . Q.E.D. 

Definition 2. The neighbourhood of the median (N) is a space of nSN ⊆∈π  such that ( ) r
k
Md m =≤

2,ππ , 

where r is the radius of N. 

Corollary: Nr ∈π . 

The theorem narrows the searched space from Sn to N. When radius r is high, the cardinality of subspace N is 
not significantly lower than that of Sn. However, when r is low, then the subspace N might be so small that the 
consensus can be easily found even for a very large n. To illustrate the point, consider a situation where n = 10, 
k = 6 and M = 30. In permutation methods, such as CRM or DCM, a consensus is searched through Sn with 
n! = 3,628,800 permutations. However, according to the distance theorem, it suffices to search only through 
permutations closer than or equal to 10 inversions to the median, which is (see Table 1) only about 52,000 cases. 
Thus, there is a reduction of more than 3,5 million permutations (the factor of 70)! 

4 Reduction technique 
To allow one to solve problems involving permutations of higher orders using the permutation methods, we 
propose a technique for reducing the amount of permutations which the methods need to search in order to lower 
their overall computational complexity. The reduction technique exploits the distance theorem presented in the 
previous section to narrow the searched space from Sn to N. It alters the computation performed by a permutation 
method so that it proceeds in the following steps: 
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1. Preference rankings of n alternatives by k DMs are turned into permutations. 
2. Median is found as the permutation(s) with the lowest overall distance to all the preference rankings. 
3. If there is more than one median, the problem is ill-defined and the computation stops. 
4. The radius r is computed to determine the space (N) which needs to be searched. 
5. The efficiency of the reduction is tested and the computation stops if the subspace N is still too large to find 

the consensus in a reasonable time. 
6. A consensus is found in the neighbourhood (N) of median using an arbitrary permutation method. 

The metric used in step 2 is arbitrary. The step 3 excludes ill-defined problems explicitly, but cases with two 
or more medians can be, in general, handled too – by proceeding into step 6 for each median separately. Note 
that performing the reduction is quite cheap as its computation complexity is n2k2, which imposes a negligible 
overhead compared to the n! iterations a permutation method normally needs to perform, so even if the reduction 
is not significant, there is no reason not to try it. 

5 Numerical examples 
In this Section, aforementioned concepts are explained on simple illustrative examples. 

Example 1. (trivial) Let all permutations be equal. Then we have: mi ππ = i∀ , M = 0, so ( ) 02, =≤
k
Md rm ππ  

and mr ππ =  as expected. 

Example 2.  Suppose that three DMs rank five alternatives A, B, C, D and E as follows: DM1 = 1π  = (A, C, E, 
B, D), DM2 = 2π  = (C, A, B, E, D) and DM3 = 3π  = (A, B, C, D, E). We compute the distances among all 
permutations using the Kendall’s tau distance: ( ) 2, 21 =ππd , ( ) 3, 31 =ππd  and ( ) 2, 32 =ππd . Median is π2 

(the problem is well-defined), M = 4, 
3
82

==
k
Mr , so we look for the consensus up to distance 2 from the 

median (the distance is an integer). This means only 14 permutations (see Table 1) out of 120 permutations have 
to be tested. The consensus is (A, C, B, E, D). 

Example 3. Now consider different situation: DM1 = DM2 = (A, C, E, B, D) and DM3 = DM4 = (A, B, C, D, E). 
Clearly, we have a situation with two opposing groups, where consensus cannot be achieved. It is easy to verify 
that the median (as well as consensus) is each of the four permutations, hence the problem is  ill-defined. 

Example 4. Assume that there are the following preference rankings of five objects: (A, B, C, D, E), (B, A, C, 
D, E), (B, C, A, D, E), (B, C, D, A, E) and (B, C, D, E, A). All permutations changes by one transposition of A. 
The median is the ‘middle’ permutation (B, C, A, D, E), M = 6, r = 12/5, and mr ππ = . 

6 Computer simulations 
To test the behaviour, applicability and efficiency of the reduction technique, extensive Monte Carlo simulations 
were performed for different values of n (number of alternatives) and k (number of DMs) with more than 
100,000 randomly generated problems. The analysis was performed by the OCRP Solver, a decision support tool 
available from: http://www.fit.vutbr.cz/~ifiedor/ocrpsolver/. The consensus was searched by 3 different methods: 
DCM, CRM (both briefly described in Section 1) and MED, because the consensus found by different methods 
might differ in general. The MED method is a simple method which finds a consensus as the permutation(s) with 
the lowest distance to all other permutations given by DMs. The reason to use it is that it searches the consensus 
in a similar way as the median is searched, so it might be interesting to find out if the consensus found by this 
method will be close to the median. The results of simulations are shown in Tables 2-5. 

Number of alternatives 
(n) 4 5 6 7 8 9 10 12 14 16 18 20 

Well-defined problems 
(expressed in percent) 0.46 27.34 64.84 82.11 87.29 89.9 91.87 94.51 95.58 96.62 97.46 97.96 

Table 2 A distribution of well-defined problems in OCRP for different n (100 DMs, 10 000 problems). 

First, we tested how many problems are well-defined for different n and the results are shown in Table 2. As 
can be seen, for a larger number of alternatives the number of well-defined problems is growing (presumably to 
100%). We also examined whether one median implies a unique consensus, but the answer was negative. 

Next, we focused on analysing the distance between a median and a consensus for different values of n. The 
results are presented in Table 3. From these results, some observations can be made: 
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• The average radius 
k
Mr 2

=  was getting larger with growing n (and the space Sn which need to be searched). 

• The subspace N of Sn was not much smaller than Sn on average (see the [ ]nSNavg /  values expressing the 
ratio between the reduced space N and the original space Sn in percent). However, the average (empirical) 
distance between the median and the furthest consensus (the solution might contain more than one consensus 
if they are all equally good) was much smaller than r (see the ( )[ ]rdavg mr /,ππ  values expressing the ratio 
between the actual distance ( )rmd ππ ,  and the theoretical maximal distance r, as r differs for each problem), 
which means that in order to find the consensus a significantly smaller subspace of Sn was enough to search 
through. For example, for n = 8 and the CRM method, the average distance found between median and the 
furthest consensus was just [ ] 4.4582.0 =⋅ ravg . It means that, in average, it would be sufficient to process 
only the permutations with the distance from median up to 4 and there are only 285 such permutations from 
all 40,320 permutations. That is a difference in more than two orders of magnitude. 

Number of 
alternatives 

(n) 
[ ]ravg  [ ]nSNavg /  

( )[ ]rdavg mr /,ππ  

rπ  nearest from mπ  rπ  furthest from mπ  
CRM DCM MED CRM DCM MED 

4 4.5362 83.33% 0.044894 0.000986 0.160571 0.103846 0.08047 0.29142 
5 7.7154 88.33% 0.066591 0.023921 0.272881 0.117663 0.215662 0.357354 
6 11.7322 93.19% 0.100863 0.068657 0.317233 0.128777 0.256401 0.389836 
7 16.5156 96.55% 0.134482 0.105069 0.339702 0.160821 0.279646 0.402664 
8 22.2904 98.44% 0.178254 0.141813 0.370139 0.202144 0.304321 0.431101 

Table 3 Average distance between a median and a consensus for different n (10 DMs, 1000 problems). 

Number of 
alternatives (n) 

30% of [ ]ravg  [ ]nH SNavg /  Number of solutions containing at least one rπ  in NH 
CRM DCM MED 

4 1.36086 16.67% 93.85% 100.0% 77.95% 
5 2.31462 11.67% 92.49% 99.34% 60.26% 
6 3.51966 6.8% 90.92% 97.38% 47.08% 
7 4.95468 3.2% 86.60% 96.78% 39.01% 
8 6.68712 3.0% 80.58% 93.61% 30.04% 

Table 4 The amount of solutions with at least one consensus in space NH defined by 30% of r for different n. 

Of course, we never know if we have found the consensus until we have processed all the permutations in N, 
so we cannot search just the permutations up to the average distance. But we can use the reduction technique as a 
heuristic and try to search only a small part of N in order to find the closest permutation to the preferences given 
by DMs in a reasonable time, even if we do not know if the permutation is the actual consensus or not. It is still 
better to find a suboptimal solution to the problem than not find any solution at all. Table 4 shows the probability 
that we will find at least one consensus (out of possibly many equally good) if we search only a subspace of N up 
to the 30 % of the average r. As can be seen, the reduction is significantly better in this case as we for, e.g., n = 8 
search only 3 % of Sn (compared to 98.44 % before), and we still find a consensus in more that 80 % cases. 

Number of 
DMs (k) Entropy [ ]ravg  

( )[ ]rdavg mr /,ππ  

rπ  nearest from mπ  rπ  furthest from mπ  
CRM DCM MED CRM DCM MED 

10 0.816470 16.51560 0.134482 0.105069 0.339702 0.160821 0.279646 0.402664 
5 0.640592 14.60120 0.124172 0.163831 0.319748 0.164463 0.241548 0.740827 
3 0.465760 12.18071 0.082859 0.145048 0.285900 0.116300 0.215913 0.966611 

Table 5 Average distance between a median and a consensus for different entropy of DMs’ preferences (n = 7). 

One problem with searching only a small part of N is that with higher n, the average radius r and the distance 
between the median and consensus is getting higher, decreasing the probability that we will find the consensus in 
this small part of N. As the problems randomly generated by the Monte Carlo algorithm consist usually from 
rankings uniformly distributed among the whole space Sn, we are, in fact, dealing with worst case scenarios as 
real problems normally contain rankings relatively close to each other and not distributed among the whole space 
Sn. To find out how the average radius r and the distance between the median and consensus will be like when 
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we are more close to the real problems, we examined the relationship between the entropy of DMs‘ preferences 
and the distance between median and consensus. In [6] the entropy of decision makers’ preferences was 
introduced as a measure of concordance among DMs. The lower entropy means larger agreement of DMs‘ 
preferences and vice versa. Our simulations showed that when entropy was lower, the radius r was smaller, and 
also the empirically found distance between median and consensus was lower on average for DCM and CRM, 
see Table 5. Based on these results, we believe that for real problems the reduction will be much more effective. 
Moreover, also the number of well-defined problems was getting larger with the decreasing entropy. 

To summarize the results, it was learned that the actual distance between a median and consensus was much 
smaller than the average radius r (from nearly 0 % to 37 % of r for selected k and n) derived from the distance 
theorem, which means that the consensus often lies in a close neighbourhood of the median and the number of 
permutations processed can be reduced significantly. Based on these empirical results, the proposed reduction 
technique can also be considered an efficient heuristic, especially for problems with similar preferences of DMs 
(with lower entropy), where the radius r is small and the number of permutations, which must be processed, is 
low. At last, it should be noted that the technique was tested on randomly generated problems, but real problems 
are far from being random, so the true test of the technique is possible only by practice. 

7 Conclusions 
The aim of the article was to introduce and test a new optimization technique for the permutation methods for the 
solution of the ordinal consensus ranking problem. The technique lowers the computational complexity of these 
methods, which is NP hard due to n! permutations, by reducing the number of permutations they must process in 
order to find a consensus. It is based on the distance theorem which postulates the maximal theoretical distance 
of the consensus from one of the initial preferences (called median). Monte Carlo simulations showed that while 
the maximal theoretical distance was often too large, the empirically found distance between the median and the 
consensus was much smaller on average. This allows to use this technique also as an efficient heuristic searching 
only a small part of the reduced space with a high probability to find a consensus, or permutation close to it, in 
a reasonable time. Moreover, if the decision makers’ preferences are similar, the maximal theoretical distance 
and the empirically found distance are getting lower, making the reduction more significant and beneficial. 
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