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Abstract. The polygon regular location problem originates in public transportation 
system management, where a coordination of circulating vehicles must be 
performed so that the vehicle arrivals are distributed regularly in some period. The 
contribution deals with the problem complexity and reports on various ways of 
reducing the computational effort, which is necessary to obtain an optimal solution 
of the problem using a general optimization environment. 
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1 Introduction 

The problem originated in the field of public transport as we can see in [2, 4, 8]. An original goal was to increase 
attractiveness of public transport by making schedule of urban and sub-urban transport more regular at some 
selected stops. It was taken into account that a regularity of vehicle arrivals optimizes a transportation supply for 
passengers by non-investment way, which can be seen in [1, 3, 5, 8]. It was found that individual vehicles as 
buses, trams or trolleybuses circle along their lines in the associated urban transportation network and in addition 
an average time of traversing a cycle is relatively short. Under these circumstances, the same vehicle usually 
appears at an observed stop several times in a given period. All the vehicle arrivals form a transportation supply 
for the passengers coming at the stop. If some arrivals follow closely one after other, the second one of the 
arrivals does not contribute considerably to the transportation supply.  

On the other hand, long intervals between arrivals cause an unpleasant time loss for passengers, which come 
at the stop randomly. It follows that some regularity of the arrivals is desirable. The regularity of vehicle arrivals 
at the given stop can be improved by a shift of arrival time of an individual vehicle. As a given vehicle appears at 
the stop several times in the given period, a shift of one of its arrivals causes shifts of all its arrivals in the period 
by the same value. Furthermore, it must be considered that the observed stop can be served by vehicles, which 
traverse different lines. It causes that time intervals between neighboring arrivals of different vehicles differ. If 
the observed period is long enough to be divisible by circle time of each considered vehicle, then arrival times of 
a given vehicle can be depicted as vertices of a regular polygon on a circle, whose circumference is equal to the 
length of the period. That is for; we can call the problem as location of vertices of polygons on a circle or briefly 
the regular polygon location problem. In the problem, the goal is to locate the set of regular polygons in a circle 
so that all vertices lie on the same circumference and their distribution be regular [6, 7, 11].  

Many researchers tackled this problem in several recent decades but due to non-linearity and discreteness of 
associated models, only heuristics have been used to solve this problem. In this contribution, we present an exact 
approach based on usage of particular characteristics of the problem and thorough model building. This approach 
together with new possibilities offered by used optimization environment enable us to solve some instances of 
the problem to optimality, which can be seen in [9, 10, 13]. 

2 Reduced Formulation of the Regular Polygon Location Problem 

Let us consider r regular polygons with the same radius and center. It follows that all polygon vertices lie on the 
circumference. Let the p-th polygon have np vertices. Vertex locations of the polygon p on the circle are uniquely 
given by an angle between a zero point on the circle and the first vertex of the polygon. Let T denote the 
circumference of the circle given in some angle units and let dp=T/np hold. If we introduce a decision variable xp, 
which denotes the angle between the zero point and the first vertex of the p-th polygon, then the second vertex 
has location dp+xp, the third vertex has location 2dp+xp and so on. 
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In general the variable xp corresponds with a value of rotation of the p-th polygon from a zero point. We also 
define a reverse mapping p(k), which returns the index of polygon containing the vertex k (see figure 1). The 
total number of involved vertices is denoted as m. It is obvious that range < 1, dp ) is sufficient for xp, p ≥ 2, to 
cover all possible locations of the p-th polygon vertices taking into consideration the condition that no vertex 
location is allowed to meet other vertex locations.  

 

 

 

 

 

 

 

 

 

Figure 1 Example of three polygons n1 = 2, n2 = 3, n3 = 4 vertices with designed labelling of vertices. Left figure 
– the default state and right figure – possible rotation of polygons, where the first polygon is fixed. 

Now we can assign the lowest value of rotation ak to each vertex k = 1, …, m and state that current value of 
rotation of vertex k is given by ak + xp(k) and this location varies over range < ak, ak + dp(k) – 1). Without loss of 
generality, we can set the values of a1 and x1 at zero. The regular polygon location problem can be formulated as 
a search for such vector < 0, x2, …, xr >, which corresponds to the most regular distribution of the vertices along 
the period T (circumference). The regularity is considered as a sum of squares of the differences between 
neighboring vertex locations in this contribution. If we denote tk as circumference distance between the vertex k 
and the directly preceding vertex, then sum of (tk)

2 for k = 1, …, m corresponds with convex nonlinear objective 
function. The k-th item of the objective function can be linearized in accordance to [12].  

 

 

 

 

 

 

 

 

 

 

Figure 2 Piecewise linearization of the item (tk)
2. 

For tk, k = 1, …, m we introduce non-negative auxiliary variables ukj ≤ 1 for j = 2, …, dp(k). Then we can 
express tk as the sum of ukj in accordance to (1) as depicted in figure 2. The square of tk can be replaced by linear 
expression depending on variables ukj accordingly to (2). 
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the vertex preceding the vertex k be denoted as i(k). We realize that the variable x1 was set to zero. This way, t1 
can be defined as T – ai(1) – xp(i(1)), where i(1) is index of the vertex with the biggest value of location in the 
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period T. The other variables tk must satisfy the link-up constraints tk = ak + xp(k) – ai(k) – xp(i(k)) for k = 2, …, m. 
Unfortunately the order of vertices changes by jumps, when the values of xp vary. 

The non-linearity involved in precedence mapping (permutation) i(k) used in the substitution constraints for 
tk

 can be removed by introducing auxiliary zero-one variables wik ∈ {0, 1} for each relevant pair (i,k), i = 1, …, 
m, k = 1, …, m, i ≠ k. A variable wik takes the value of one if and only if the vertex i directly precedes the vertex 
k. To describe the relevant pairs in the following model, we introduce a logical function exists defined on all 
pairs (i,k) ∈ {1, …, m }×{1, …, m }. The function exists(i,k) takes the value of true, if and only if the pair (i,k) is 
relevant. Making use of the previously introduced variables xp and ukj a reduced linear model of the regular 
polygon location problem can be formulated as follows: 
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ukj ≤ 1,  ukj ≥ 0 for k=1, ..., m, j=2,..,dp(k) (11) 

xp∈Z+    for p=1,..,r (12) 

wik∈{0,1}     for i=1,..,m, k=1,..,m, exists(i,k) (13) 

The consistency constraints (4) and (5) ensure that each vertex k has its predecessor and successor. The 
constraints (7) – (10) cause that if wik = 1 for some pair (i, k), then the difference between the location of vertex k 
and the location of preceding vertex i is equal to tk given by substituting equality (1). If wik=0 holds, then the 
associated constraints are relaxed by suitable values of TL

ik and TU
ik . 

3 Model Adjustments 

In the model above, there are several loose ends, which must be set up before submitting an associated instance 
to a general IP-solver for solving. The first thing, which must be determined is the logical function exists(i,k). 
The cardinality of the set of pairs (i,k), for which the function takes the value of “true” corresponds with the 
number of binary variables wik and this number forms a considerable part of the instance size. As a general IP-
solver performs common branch-and-bound method, it is obvious that complexity of the problem puts a tight 
limit on size of solved problem instances. The set of variables can be defined in several ways. 

The basic approach introduces a variable wik for each pair (i,k), where i ≠ k. The approach with reduced 
model introduces a variable wik for each pair (i,k), where inequality ai ≤ ak + dp(k) – 1 holds. The advanced 
approach defines a variable wik for each pair (i,k), where the constraints from the reduced approach is satisfied 
and, in addition, there exists no vertex j for which  the following inequalities ai + dp(i)  ≤ aj and  aj + dp(j) ≤ ak 
hold. 
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The second loose end represents the lower and upper bounds of TL
ik and TU

ik respectively. These coefficients 
may influence the starting lower bound in the branch-and-bound computational process as the associated lower 
bounding uses LP-relaxation of the model. 

The third loose end is the input order (numbering) of the polygons, especially the polygon, whose xp can be 
fixed to zero. We can order the polygons either in descending or ascending order accordingly to their number np 
of vertices. In the first case, the polygon with the biggest number of vertices is fixed and in the second case the 
polygon with the smallest number can be fixed. 

At the end of this section, we note that if we do not insist on the condition that no vertex location can share 
locations of the other vertices, then the constraints (7) and (9) can be relaxed. The original model will be called 
the full model and the reduced one will be referred as the half model. In the next section we try to show, how 
these possible settings may influence computational time of the used IP-solver. 

4 Numerical Experiments  

The presented numerical experiments are aimed at inspecting a special phenomenon, which occurred, when 
preliminary experiments [12] were performed. It was found that a reduction of decision variables did not impact 
the computational time proportionally. The numerical experiments were performed with two pools of instances, 
where each of the pools contains exactly six items. Each instance consists of one quadruple of polygons defined 
on a circle with circumference T=360. The total number of vertices included in one instance varies from 14 to 20 
and from 21 to 27 for the first and second pools respectively. All experiments were performed using the 
optimization software FICO Xpress 7.1 (64-bit, release 2010). The associated code was run on a PC equipped 
with the Intel Core i5 2430M processor with the parameters: 2.4 GHz and 4 GB RAM. 

The first series of experiments was performed with the full model. The values of TL
ik and TU

ik were set at the 
biggest value and descending order of polygons was used. The tested models differ only in the number of wik, 
where three cases “basic”, “reduced” and “advanced” are distinguished in accordance to the denotation 
introduced in the previous section. Each problem instance was solved to optimality and the associated average 
computation times and average numbers of introduced variables wik are reported in table 1. 

 

  Basic Reduced Advanced 

Pool Range Avg_CT Avg_wij Avg_CT Avg_wij Avg_CT Avg_wij 

1 14-20 7.7 282 10.4 171 13.2 144 
2 21-27 79.6 571 14.6 330 26.5 217 

Table 1 Average computational times in seconds and average numbers of introduced variables are reported in 
columns denoted as Avg_wij and Avg_CT respectively. 

The next portion of experiments was focused on the influence of the less or more tight adjustment of the 
bounds TL

ik and TU
ik on the computational time. The associated experiments were performed with the full model; 

the number of variables wik was reduced in accordance to the approach “advanced” and where descending order 
of polygons was used. Accordingly to the definition in the previous section, the values of the TL

ik and TU
ik were 

subsequently set at the compromise setting. Each instance of the pools was solved to optimality and the 
associated average computational times are plotted in table 2. 

 

   Biggest s. Tight s. Compromise s. 

Pool Range Avg_wij Avg_CT Avg_CT Avg_CT 

1 14-20 144 13.2 9.9 2.0 
2 21-27 217 26.5 27.0 3.3 

Table 2 Average computational times in seconds and average numbers of introduced variables are reported in 
columns denoted as Avg_wij and Avg_CT respectively. 

The last portion of experiments concerns an impact of the possible reduction of constraint set and the 
polygon order to the performance of branch-and-bound search. In these experiments the biggest setting of TL

ik 
and TU

ik was applied and the approach “advanced” to introduction of variables wik was used. The ascending order 
was tested on the full model and the half model was combined with descending ordering of polygons. The 
resulting average computational times are reported in table 3. 
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Model Full Full Half 

Ordering Descending Ascending Descending 

Pool Range Avg_wij Avg_CT Avg_CT Avg_CT 

1 14-20 144 13.2 3.4 374.2 
2 21-27 217 26.5 7.5 2261.4 *) 

Table 3 Average computational times in seconds and average numbers of introduced variables are reported in 
columns denoted as Avg_wij and Avg_CT respectively. *) The average was computed from five instances only. 

Computation of the sixth instance exceeded one hour and was prematurely terminated. 

5 Conclusions 

To our great surprise the obtained numerical results show that neither variable reduction nor constraint relaxation 
in model of the polygon regular location problem accelerate common branch-and-bound search embedded in an 
optimization environment. The only exception is the reduction from “basic” to “reduced” for the pool with 
bigger number of vertices. The similar results appear in the attempts for tighter setting of relaxing constants TL

ik 
and TU

ik. Nevertheless, it was found that a convenient setting, which compromises the loose and tight settings, 
might considerably reduce the computational time of the searching process. Furthermore, the ascending order of 
polygons in the input data also influences a computational time reduction. 
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