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Abstract. Under some finite-population sampling schemes the calculation
o exact inclusion probabilities may be prohibitively complex even for modest
population sizes. This is especially true for various sequential procedures used
in spatial sampling and for fixed-cost (or sum-quota) schemes. Such a phe-
nomenon presents a significant challenge for constructing estimates of finite
population totals based on the Horvitz-Thompson approach. Such a challenge
may be overcome by replacing unknown first-order inclusion probabilities with
estimates computed in a simulation study which is enabled by the knowledge of
the sampling scheme. Such estimates may be calculated in several ways, which
influences stochastic properties of the Horvitz-Thompson statistic. Available
auxiliary information may also be used to improve their accuracy. In this pa-
per isotonic regression algorithms are applied to capitalize on limited auxiliary
information and to improve the accuracy of simulation-assisted design-based
estimates for finite population totals.
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1 Introduction: empirical Horvitz-Thompson estimation

Consider a finite population represented by a set of indices U = {1, ..., N}. Values y1, ..., yN of a fixed
characteristic correspond to each population unit. The parameter under study is the population total:

t =
∑
i∈U

yi (1)

In order to estimate it, an unordered sample s is drawn from U through some sampling scheme charac-
terized by inclusion probabilities of the first-order: p1, ..., pN where pi = Pr{i ∈ s} for i ∈ U . If inclusion
probabilities are known then the population total may be estimated without design bias using the well-
known Horvitz-Thompson (H-T) statistic [9]:

t̂ =
∑
i∈s

yi
pi

(2)

However, for some sampling schemes exact calculation of first-order inclusion probabilities p1, ..., pN
may be impossible because of prohibitive computational complexity. This is particularly true for various
sequential sampling schemes like those described in [2] and [4] where the combinatorial explosion prevents
the computation of inclusion probabilities even for very modest population sizes. At first sight, this effect
seems to make the H-T estimation impossible. Fortunately, as noted in [5],[15], another potent source of
information still remains in the hands of a statistician. Namely, the sampling procedure itself. This may
be used to generate a large number of independent sample replications. By examining sample membership
indicator values corresponding to any particular population unit within all replications one may arrive at
the estimate of associated inclusion probability. This estimate may take the form of sample proportion
of ones or some other function of membership indicators. Let R be the number of replications and let fi
be a number of times a certain i-th population unit is drawn to a sample replication. A classic approach
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proposed in [6] would rely on estimating the inclusion probability pi through the statistic:

p̂iF =
fi + 1

R+ 1
(3)

for i ∈ s and inserting these estimates instead of pi into (2). However, as noted in [6], the number of
sample replications needed to guarantee a desired level of accuracy for population total estimates may still
be uncomfortably large, even with respect to contemporary computing capabilities. One possibility of
overcoming such a difficulty is the adoption of sequential methods at the simulation stage as proposed in
[6]. In this paper another approach to empirical H-T estimation based on the use of external information
is investigated.

Let us assume that available auxiliary information takes form of an ordering constraint on first-order
inclusion probabilities so that these probabilities are known to behave monotonically. Such a situation
arises for many sampling schemes such as Pareto sampling discussed in [13] where inclusion probability
grows with increasing values of some known auxiliary variate. It also appears in the case of fixed-cost sum-
quota sampling proposed in [11], where inclusion probabilities decrease with growing cost of observing
the variable. It is worth noting, that when subsequent replications are generated, the values of sample
membership indicators may be recorded for all population units, as opposed to observing only units in the
sample s. The additional computational effort associated with recording all of them is negligible. Then
various isotonic regression algorithms may be applied to enhance the accuracy of inclusion probability
estimates within the sample by forcing the ordering constraints to be satisfied by all the estimates in
the population. Hence such approach may be viewed as a special indirect case of ”strength-borrowing”
technique discussed in [10]. In the next section one such algorithm is presented.

2 The PAVA procedure

The well-known Pool-Adjacent-Violators Algorithm (PAVA) works in the following way (see [1], [8], [3]).
Let p1, p2, ..., pN be unknown probabilities satisfying a simple order:

p1 ≤ p2 ≤ ... ≤ pN (4)

Let Ri independent trials be made of an event with probability pi and let fi denote the number of successes
in these trials (i = 1, ..., N). Constraint-preserving estimates p̂1, ..., p̂N of p1, ..., pN satisfying (1) are
calculated by iteratively grouping (merging) initial unconstrained estimates f1/R1, ..., fN/RN (sample
proportions of ones) into groups and repeatedly averaging them within each group. The procedure works
through following steps .

Step one: assign the index of each probability pi for i = 1, ..., N to a separate group so that initial

groups are A
(0)
1 = {1}, ..., A(0)

N = {N} and initial number of groups is a(0) = N . Set an initial estimate

of mean probability in each i-th group to q
(0)
i = fi/Ri for i = 1, ..., N .

Step two: in each subsequent step of the procedure (numbered m = 1, 2, ...) whenever mean proba-
bility estimates in some neighboring groups are found to breach the order constraint, a maximum-length

sequence A
(m−1)
i , ..., A

(m−1)
i+z (where 1 ≤ i < i+ z ≤ a(m−1)) of such groups is merged together so that

A
(m)
i = A

(m−1)
i ∪ ... ∪A

(m−1)
i+z

and
A

(m)
j = A

(m−1)
j+z

for j = i+ 1, ..., a(m) while a(m) = a(m−1) − z. Then a new within-group mean probability estimate:

q
(m)
i =

∑
j∈A

(m)
i

fj∑
j∈A

(m)
i

Rj

is assigned to the group A
(m)
i while q

(m)
j = q

(m−1)
j+z for j = i + 1, ..., a(m). This step is repeated until all

estimates q
(m)
1 , ..., q

(m)

a(m) of mean within-group probabilities satisfy ordering constraints or there is just
one group left.
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Step three: when the iteration stops after the last - say M-th - step (M ∈ {1, 2, ...}) a mean probability
estimate computed for a group is assigned to each of its member components so that the final estimate

for the probability pi is p̂i = q
(M)
j for i ∈ Aj , j = 1, ..., a(M).

If f1, ..., fN are independent, this procedure leads to a vector of restricted maximum likelihood es-
timates for probabilities p1, p2, ..., pN . Such estimates may find non-trivial applications in various fields
of study including medicine, toxicology or calculating insurance premiums ([14],[16]). At the same time,
for most sampling schemes a significant dependence between some sample membership indicators may
appear. Resulting lack of independence among f1, ..., fN seems to prevent the use of PAVA to estimate
ordered inclusion probabilities. However, new results obtained by Gamrot [7] indicate that PAVA-based
estimates remain consistent even in the case of strong correlation between sample membership indicators.
Hence the empirical Horvitz-Thompson estimator constructed upon them should also remain consistent.
A more detailed investigation of its properties for a specific sampling scheme is presented in the next
section.

3 Simulation results

The sequential fixed-cost sampling scheme of Pathak [11] features varying inclusion probabilities. Their
exact evaluation is very demanding computationally even for modest sample sizes. Nevertheless, despite
the existence of sufficiency-based unbiased estimators that do not rely on inclusion probabilities, empirical
H-T estimation may be of interest when nonresponse corrections need to be incorporated or when some
modifications are introduced to the original scheme. In this section the Pathak procedure in its original
form serves as an illustration of PAVA-based empirical H-T estimation. The selection procedure works
in the following way. Let c1, ..., cN be costs of observing the value of characteristic under study for
corresponding population units, known in advance. Without a loss of generality one may assume that
units are pre-ordered by decreasing value of this cost so that c1 ≥ c2 ≥ ... ≥ cN . Individual units are
drawn to the sample one-by-one with equal probabilities until the sum of costs corresponding to drawn
units exceeds some pre-determined survey budget C. More specifically, the procedure is stopped when
the cumulative cost of the sample becomes greater or equal C and the population unit for which it occurs
is not included in the sample. As a result, inclusion probabilities satisfy the simple order expressed by
multiple inequality (4). Hence their estimates p̂1, ..., p̂N may be obtained through PAVA. By inserting
these estimates into formula (2) an estimator of the population total for the Pathak sampling scheme is
obtained.

A simulation study was carried out in order to assess the properties of resulting H-T estimator
for the population total and to compare it to the classic empirical H-T statistic involving inclusion
probability estimates computed through Fattorini’s formula (3). In simulation experiments, a sampling
frame corresponding to the finite population under study was represented by the data set obtained during
agricultural census carried out by Polish Central Statistical Office (GUS) in 1996. The dataset described
population of 695 farms in the Grȩboszów municipality of the Da̧browa Tarnowska district. Total yearly
sales of a farm represented the variable under study for which the population total was to be estimated.
It was also assumed that the cost of observing this variable for individual farms was proportional to the
farm area, assumed to be known. It was assumed that C = 0.05 · (c1 + ...+ cN ) so the survey budget was
equal to five percent of the census cost. As a result sample size could vary in the range between 10 and 102
units depending on the cost of sampled units. The simulation study was designed to jointly capture the
variability of estimates resulting from both sampling of finite population and a random simulation study.
It was carried out by sequentially generating independent sets of replications for each sample drawn from
the finite population and computing corresponding empirical H-T estimates. All computations were made
in the R computing environment [12].

In the first experiment R = 300 replications were drawn for each of 15000 Pathak samples. Histograms
of empirical distributions for both empirical H-T estimates are shown in the Figure 1. The dashed vertical
line represents true value of the population total while the solid vertical line represents observed average of
estimates. Moreover, observed characteristics of empirical distributions for both empirical H-T estimators
are listed in the Table 1. They include their biases, relative biases (Relbias) computed as a ratio of bias
to the true estimated value, variances, mean square errors (MSE), relative root mean square errors
(RRMSE) and ratios of squared bias to the total mean square error (Bias share). Distributions of both
estimators feature a very similar shape, with slight positive skew and nearly the same variance. However
the distribution of Fattorini’s estimator is substantially shifted to the left which is reflected by its strong
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negative bias. The bias of the PAVA-based estimator is positive, but its absolute value is several times
lower. This advantage in terms of absolute bias also influences the overall accuracy of estimates. The
mean square error of the PAVA-based estimator is 17 % lower than that of Fattorini’s statistic.
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Figure 1: Distribution of estimates for Fattorini’s and PAVA-based empirical H-T statistic

Bias Relbias Variance MSE RRMSE Bias share

Fattorini -298242.8 -0.0649 3.592 · 1011 4.482 · 1011 0.1457 0.1984

PAVA-based 37207.4 0.0081 3.702 · 1011 3.716 · 1011 0.1327 0.0037

Table 1: Selected distribution characteristics of both empirical H-T estimators

In the second experiment, the investigation was extended to compare the behavior of estimators for
R = 100, 200, ..., 1000 replications. For each value of R a total of 10000 samples were drawn using Pathak
scheme, with corresponding set of R replications again generated independently for each sample. The
absolute bias, relative bias, relative root mean square error and the share of bias in the MSE for varying
values of R are shown in the Figure 2. It turns out that the bias of the proposed PAVA-based estimator is
very stable for small numbers of replications, while it slowly tends to zero when R grows. For Fattorini’s
estimator this tendency was more pronounced, but absolute values of bias were 13 to 3.46 times higher
reaching nearly 20 percent for R = 100. The relative root mean square error of both estimators exhibits
similar behavior. For Fattorini’s statistic it is always higher than for the PAVA-based one, with the
relative difference reaching 58 percent for R = 100 but quickly diminishing when R grows. For any value
of R the share of bias in the mean square error did not exceed one percent for the PAVA-based estimator
while it reached over 70 percent for the Fattorini’s statistic and R = 100.
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Figure 2: Stochastic properties of Fattorini’s and PAVA-based empirical H-T statistic for varying R

4 Conclusions

The proposed estimator indirectly utilizes observations of sample membership indicators associated with
all population units to increase the accuracy of first-order inclusion probability estimates corresponding
to sampled units. Presented simulation study suggests, that this in turn significantly reduces the bias
and improves the accuracy of empirical H-T estimator itself, even for quite large numbers of replications.
One may reasonably expect that the strength borrowing effect should be particularly beneficial when
differences between true individual inclusion probabilities are small, the population size is large and
when generation of sample replications is time-consuming.
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