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Abstract. The analysis of time varying conditional correlation structures
seems to be a significantly important part of multivariate time series mod-
elling, particularly from the (practical) financial or economic point of view.
In 2002, Robert Engle published an innovative concept in the framework of this
issue. A simple class of multivariate autoregressive conditional heteroskedas-
ticity models, the so-called dynamic conditional correlation models were intro-
duced. Thereafter, these techniques have been examined and adjusted in many
different theoretical or empirical ways. In the contribution, several various
approaches to modelling the dynamic conditional correlations originally based
on Engle’s idea are reviewed and discussed. Some of their pros and cons are
mentioned and demonstrated. Finally, the comparison of their performance is
shown in the study of the portfolio of the European currencies and their cor-
relation links. All the relevant procedures are implemented in the statistical
software R.
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1 Introduction

Consider a stochastic vector process {Xt}t∈Z of the dimension (n× 1). Denote Ft−1 the information set
(σ-algebra) generated by observed multivariate time series {Xt} up to and including time t − 1. Let θ
be a finite vector of (real) parameters.

Assume the following model

Xt = µt(θ) + εt, εt = Ht(θ)
1/2Zt, (1)

where µt(θ) is the (n× 1) conditional mean vector of Xt and Ht(θ) is the (n×n) conditional covariance
matrix of Xt. Furthermore, one supposes that {Zt} is an (n× 1) i.i.d. stochastic vector process indepen-
dent of {Xt} such that it has following first two moments: E(Zt) = 0 and var(Zt) = In, where In is the
(n× n) identity matrix.

The presented structure can be easily verified:

E(Xt|Ft−1) = µt(θ) +Ht(θ)
1/2E(Zt|Ft−1) = µt(θ), (2)

var(Xt|Ft−1) = E(εtε
⊤
t |Ft−1) = Ht(θ)

1/2E(ZtZ
⊤
t |Ft−1)(Ht(θ)

1/2)⊤ = Ht(θ). (3)

Thus, it is evident that Ht(θ)
1/2 is any (n×n) positive definite matrix such that Ht(θ) is the conditional

covariance matrix of Xt, e.g. Ht(θ)
1/2 may be obtained by the Cholesky decomposition of Ht(θ). Both

µt and Ht depend on the (unknown) parameter vector θ, which can be (in most cases) split into two
disjoint parts, one for µt and one for Ht. The conditional mean vector is obviously specified as a linear
model for the level of Xt, e.g. VAR or VARMA. In the following section, several various specifications of
the conditional covariance matrix Ht are reviewed.
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2 Conditional covariance modelling

As stated above, the main objective is to capture the time varying behavior of the conditional covariance
matrix Ht (for convenience the vector of parameters θ is left out in the notation).

Bollerslev’s constant conditional correlation (CCC) model (see [3]) decomposes the matrix Ht as

Ht = DtRDt, (4)

where Dt is a diagonal matrix of time varying volatilities
√
hii,t, i = 1, . . . , n, and R is an (n×n) constant

conditional correlation matrix, i.e. a positive definite matrix with ones on its diagonal. The matrix R is
usually estimated by the sample correlation matrix of standardized errors γt(ϕ) = D−1

t (ϕ)Xt. The finite
parameter vector ϕ contains only relevant elements of the parameter vector θ. The diagonal elements of
Dt can be modelled by usual univariate techniques for the conditional variance, e.g. by the univariate
GARCH(1, 1) model. However, the assumption that the conditional correlations are constant may seem
unrealistic and be too restrictive.

Engle and Sheppard [6] offer an extension of the model (4) in a natural way to the more general case
of dynamic conditional correlations (DCC) which are defined as

Ht = DtRtDt, (5)

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2, (6)

Qt = (1− α− β)S+ αγt−1γ
⊤
t−1 + βQt−1, (7)

where Rt = Rt(ϕ, α, β,S) is a matrix of time varying conditional correlations with the unit diagonal
elements, α and β are scalars and S is a parameter matrix. Specify that diag{Qt} is a diagonal matrix
with qt,11, . . . , qt,nn on its diagonal, where qt,11, . . . , qt,nn are diagonal elements of the matrix Qt.

If Qt is positive definite, Rt is also positive definite with unit diagonal elements. To ensure that Qt

is positive definite, it is sufficient to suppose that α ≥ 0, β ≥ 0, α + β < 1 and S is a positive definite
matrix, see [6]. It is also frequent to assume that sii = 1, i = 1, . . . , n, in order to guarantee the unique
specification of (α, β,S). From (3) and (5), one can easily see that

var(γt|Ft−1) = D−1
t var(Xt|Ft−1)D

−1
t = D−1

t HtD
−1
t = Rt. (8)

With respect to the preceding assumptions, the DCC model defined by (5)-(7) contains 1
2n(n − 1) + 2

unknown parameters in addition to the parameters in ϕ. To eliminate complicated (quasi-)maximum
likelihood estimation of all elements of the matrix S with many constraints, Engle [5] provides the so-called

correlation targeting, i.e. S is substituted by the moment estimator Ŝ = 1
T

∑T
t=1 γ̂tγ̂

⊤
t , γ̂t = D−1

t (ϕ̂)Xt.

However, replacing S by Ŝ, i.e. by the sample second moment of γt, is not suitable estimation device.
The matrix Ŝ is a biased and inconsistent estimator of S, see [1] for more details. This can be easily
shown: Suppose that α + β < 1 and that E(Qt) and E(γtγ

⊤
t ) are independent of t. Thus, by applying

the expectation operator on both sides of (7), the following equality is obtained

S =
1− β

1− α− β
E(Qt)−

α

1− α− β
E(γtγ

⊤
t ). (9)

Furthermore, it holds that E(γtγ
⊤
t ) = E[E(γtγ

⊤
t |Ft−1)] = E(Rt) = E(diag{Qt}−1/2Qtdiag{Qt}−1/2) ̸=

E(Qt), i.e. generally S ̸= E(γtγ
⊤
t ), apart from the case of constant conditional correlations.

Aielli [1] proposes a corrected dynamic conditional correlation (cDCC) model, namely the equality for
Qt, i.e. (7), takes a different form:

Qt = (1− α− β)S∗ + αdiag{Qt−1}1/2γt−1γ
⊤
t−1diag{Qt−1}1/2 + βQt−1. (10)

Note that γ∗
t = diag{Qt}1/2γt does not depend on S∗ since the diagonal elements of Qt only depend on

the diagonal elements of S∗ which are all equal to one, see the assumptions above. The matrix S∗ in (10)
can be consistently estimated by the sample second moment of γ∗

t due to two following facts. Firstly,
from (6) and (8) it is clear that

var(γ∗
t |Ft−1) = diag{Qt}1/2var(γt|Ft−1)diag{Qt}1/2 = diag{Qt}1/2Rtdiag{Qt}1/2 = Qt. (11)
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Secondly, taking into account the similar assumptions, the same approach as in (9) and the fact that

E(Qt) = E(diag{Qt}1/2Rtdiag{Qt}1/2) = E[diag{Qt}1/2E(γtγ
⊤
t |Ft−1)diag{Qt}1/2] = E(γ∗

tγ
∗⊤
t ), (12)

the equality S = E(γ∗
tγ

∗⊤
t ) holds.

The main difference in the correlation targeting in the models (7) and (10), i.e. substituting S and S∗

by the sample second moment of γt and γ∗
t , respectively, is that the matrix Ŝ∗ depends on the parameters

(α, β) of the conditional correlation matrix, whereas Ŝ does not.

Estimation of the previous (dynamic) conditional correlation models can be formulated as a maximum
likelihood problem once a specific distributional assumption is made for the data. Obviously, it is supposed
that the data are multivariate normal with the given mean and covariance structure. Fortunately, the
considered estimator is a quasi-maximum likelihood, in the sense that it will be consistent but inefficient,
if the mean and covariance assumptions are correctly specified even if other distributional assumptions
are incorrect. See [1] or [4] for more information and references.

Thus, the log likelihood function for X1, . . . ,XT for the model (5)-(7) can be written as

L(ϕ, α, β,S) = −1

2

T∑
t=1

(n log(2π) + log |Ht|+X′
tH

−1
t Xt) = LV (ϕ) + LC(ϕ, α, β,S), (13)

where

LV (ϕ) = −1

2

T∑
t=1

(
n log(2π) + log |Dt|2 +X⊤

t D
−2
t Xt

)
, (14)

LC(ϕ, α, β,S) = −1

2

T∑
t=1

(
log |Rt|+ γ⊤

t R
−1
t γt − γ⊤

t γt

)
. (15)

To split the function L into the sum of two parts LV and LC , one might use that |Ht| = |Rt| · |Dt|2
and H−1

t = D−2
t +D−1

t (R−1
t − In)D

−1
t . Then, the estimation procedure is frequently done in two steps

due to computational efficiency. Firstly, the parameters ϕ of the time varying volatilities are estimated
by maximizing LV (ϕ). Secondly, the estimator ϕ̂ of ϕ from the preceding step and Ŝ obtained by the

correlation targeting (see above) are used in maximizing LC(ϕ̂, α, β, Ŝ) to estimate the parameters (α, β).

Engle [4] refers to observed general downward bias of (α̂, β̂) in the model (5)-(7) in the case of the
second step of previous estimation. A simple adjustment with regard to this fact has been discovered,
see [1]. The method is based on subsets of observations, i.e. on all combinations of pairs of elements
{Xt}. In particular, the composite likelihood function replacing LC is proposed in the form

cLC(ϕ, α, β,S) =
1

P

P∑
p=1

LC,p(ϕ, α, β,S), (16)

where LC,p(ϕ, α, β,S), p = 1, . . . , P = 1
2n(n− 1), denotes the bivariate (quasi-)log likelihood of the DCC

submodel, i.e. the same as LC in (15), defined only for two elements (one pair) from {Xt} with respect

to the related adjustments of γt, Ŝ, Dt, Qt and Rt. Therefore, the estimators of (α, β) are obtained by
maximizing (16). The method is computationally simple and does not require to invert large dimensional
matrices. On the other hand, the composite likelihood estimators are less efficient than full maximum
likelihood estimators.

In both previous cases, one can work also with the model based on the equation (10). It is sufficient

to consider Ŝ∗, i.e. the sample second moment of γ∗
t , instead of Ŝ in the all preceding considerations.

For other important characteristics of the models, e.g. their asymptotic distribution or the consistency
of the estimators, see [1], [4] or [6].

3 EU currencies

To examine the empirical performance of the previously mentioned approaches to conditional correlation
modelling, the exchange rates of the selected EU currencies are analyzed. In the EU27, 17 member
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countries use the Euro, other 3 states (Denmark, Latvia and Lithuania) are members of the ERM II
framework (the European Exchange Rate Mechanism II), i.e. the national currencies are allowed to
fluctuate around their assigned value with respect to limiting bounds, and the Bulgarian Lev is pegged
with the Euro. For these reasons, a portfolio of six remaining EU currencies is considered, i.e. the Czech
crown (CZK), the British pound sterling (GBP), the Hungarian forint (HUF), the Polish zloty (PLN),
the Romanian leu (RON) and the Swedish krona (SEK).

Particularly, logarithmic returns of the bilateral exchange rates from 2 January 2007 to 27 April 2012
(1365 observations) with the Euro as the denominator are considered, see Table 1. The data are available
on the web pages of the European Central Bank.

CZK GBP HUF PLN RON SEK

mean -0.00007 0.00014 0.00010 0.00006 0.00019 -0.00001

median -0.00007 0.00012 -0.00024 -0.00014 0.00000 0.00004

maximum 0.03165 0.03461 0.05069 0.04164 0.02740 0.02784

minimum -0.03274 -0.02657 -0.03389 -0.03680 -0.01992 -0.02260

std. dev. 0.00478 0.00601 0.00763 0.00721 0.00462 0.00497

skewness 0.20218 0.30655 0.42056 0.30802 0.54616 0.31526

kurtosis 8.49754 6.49258 7.80556 8.05110 7.37830 6.05079

Table 1: The basic characteristics of logarithmic returns of the selected exchange rates.

First of all, it is necessary to choose a suitable model for the conditional mean. Here, the VAR(3)
model is used to catch the level of the data. This model is chosen with respect to results of the multivariate
Ljung-Box test, several information criteria, the impulse response and root analysis.

Then, the conditional covariances are investigated. The performances of the CCC model, DCC model
with MLE, DCC model with composite MLE, cDCC model with MLE and cDCC model with composite
MLE are compared. Note that time varying volatilities, i.e. the first step of the estimation procedure,
are represented by the standard EGARCH(1,1,1) model:

log(hii,t) = ωi + βi log(hii,t−1) + αi

∣∣∣∣∣ Xi,t−1√
hii,t−1

∣∣∣∣∣+ γi
Xi,t−1√
hii,t−1

, i = 1, . . . , n. (17)

Such a model is examined in several ways, e.g. the Ljung-Box and ARCH-LM tests of standardized
residuals and squared standardized residuals for each of the univariate series. It is shown to be suitable
in this way.
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Figure 1: The various models of conditional correlations, the case of HUF/EUR vs. PLN/EUR.
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The estimated parameters of conditional correlation modelling are surveyed in Table 2. The statistics
of the multivariate Ljung-Box test with 7 lags are computed, i.e. the test of the null hypothesis of
uncorrelated residual series. The corresponding p-values have mainly information value because the
appropriate (asymptotic) distribution of the Ljung-Box statistic is not well known in these cases.

Hence, it is obvious that the estimators based on the DCC or cDCC models are quite similar. A certain
difference can be observed between the estimation methods, namely MLE vs. composite MLE. The visual
comparison of various models of conditional correlations can be seen in Figure 1 for the case HUF/EUR
vs. PLN/EUR. The estimated correlation curve for the DCC with MLE (or with composite MLE) is not
drawn due to its difficult distinguishability from the cDCC with MLE (or with composite MLE) in this
scale, compare with Table 2.

α̂ β̂ Q(7) (p-value)

CCC - - 245.942 (0.596)

DCC+MLE 0.01098 0.97833 252.878 (0.473)

cDCC+MLE 0.00945 0.98190 252.820 (0.474)

DCC+cMLE 0.01634 0.97432 254.689 (0.441)

cDCC+cMLE 0.01449 0.97783 254.415 (0.446)

Table 2: The estimators of (α, β) (Q(7) refers to the multivariate Ljung-Box statistic with 7 lags).

For performance measures, the following regression-based tests are calculated on portfolio returns,
wtXt, where wt is a vector of portfolio weights. Note that the conditional variance of wtXt is w

⊤
t Htwt.

First, the Engle-Colacito (EC) regression is defined as {(wtXt)
2/(w⊤

t Ĥtwt)} − 1 = λ + ξt, where ξt
is an error term. The null hypothesis λ = 0 is verified. Point out that an HAC robust estimator of
the standard deviation of ξt is required here. Second, the LM test of ARCH effects is based on the
property that the series {(wtXt)

2/(w⊤
t Htwt)} does not exhibit serial correlation. The null hypothesis

that {(wtXt)
2/(w⊤

t Ĥtwt)} is serially uncorrelated is tested (five lags are used). See [1] for more details.

Two types of portfolio weights are considered: the equally weighted portfolio (EWP), i.e. wt = 1/n, 1
is the (n× 1) vector of ones, and the minimum variance portfolio (MVP), i.e. wt = (H−1

t 1)/(1⊤H−1
t 1).

The results are summarized in Tables 3 and 4 (σ denotes the standard deviation of the portfolio returns).

EWP σEWP EC-stat. (p-value) ARCH-LM(5) (p-value)

CCC 3.6812E-03 -0.328 (0.743) 5.864 (0.320)

DCC+MLE 3.6812E-03 -0.611 (0.542) 3.115 (0.682)

cDCC+MLE 3.6812E-03 -0.877 (0.380) 3.238 (0.663)

DCC+cMLE 3.6812E-03 -0.621 (0.534) 2.463 (0.782)

cDCC+cMLE 3.6812E-03 -0.961 (0.337) 2.607 (0.760)

Table 3: The performance of the equally weighted portfolio.

MVP σMV P EC-stat. (p-value) ARCH-LM(5) (p-value)

CCC 2.4816E-03 1.018 (0.309) 0.210 (0.999)

DCC+MLE 2.4447E-03 0.981 (0.327) 0.471 (0.993)

cDCC+MLE 2.4447E-03 0.820 (0.412) 0.458 (0.994)

DCC+cMLE 2.4417E-03 1.293 (0.196) 0.848 (0.974)

cDCC+cMLE 2.4414E-03 1.065 (0.287) 0.671 (0.985)

Table 4: The performance of the minimum variance portfolio.

From the practical point of view, the CCC model can give an idea of an average level of conditional
correlations, see Figure 1. In Table 5, there is the estimator R̂ of the conditional correlation matrix
R. For instance, the British pound (GBP) does not have strong correlation links with other considered
currencies. Further, the Hungarian forint (HUF) and the Polish zloty (PLN) are quite strongly correlated
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with each other (see Figure 1) and also with the Czech crown (CZK). Naturally, the dynamic conditional
correlation models should provide deeper (and especially dynamic) insight.

R̂ CZK GBP HUF PLN RON SEK

CZK 1.000 -0.056 0.393 0.416 0.188 0.169

GBP -0.056 1.000 -0.044 -0.027 0.014 0.074

HUF 0.393 -0.044 1.000 0.664 0.446 0.321

PLN 0.416 -0.027 0.664 1.000 0.412 0.361

RON 0.188 0.014 0.446 0.412 1.000 0.217

SEK 0.169 0.074 0.321 0.361 0.217 1.000

Table 5: The CCC estimator of the conditional covariance matrix R.

4 Conclusion

In the presented case of the portfolio of six EU currencies, it was observed that the DCC and cDCC
estimators are quite similar. Furthermore, the CCC estimator could be basically viewed as (concise)
information about an average level of correlation links. With regard to the previously mentioned com-
parison of the models, it is natural to prefer the cDCC model with its consistent correlation targeting to
the DCC (or CCC) one. On the other hand, there is a certain difference between two estimation methods,
namely MLE and composite MLE. These findings will be a subject of further research.

From the economic point of view, several interesting observations were performed. For example, the
British pound seems to have only weak correlations with the other currencies in the portfolio. Moreover,
the currencies of Visegrad countries show stronger correlation links, especially in the case of the Hungarian
forint and the Polish zloty.
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