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Abstract. We develop an optimization model dealing with construction
expenses that are prescribed as a result of the EIA (Environmental Impact As-
sessment) process. The process is an obligatory part of every large construction
project and evaluates possible influences of the project to the environment, in-
cluding population health, natural and other socio-economic aspects; the result
of the process is a set of recommendation and arrangements the construction
must meet.

Our optimization model incorporates uncertainties in model parameters; we
represent them through their probabilistic distribution. Furthermore, to over-
come a problem with quantifying subjective utility function of ecological im-
pacts, we measure them by so-called indicators of ecological stability. The
resulting problem is stochastic programming problem formulated as (C)VaR
model used traditionally in finance area. In our contribution we deal with
convexity properties of this problem – these are especially important from the
theoretical as well as from the computational point of view. We propose a
series of assumptions to the problem that ensure convexity of the final set of
feasible solutions and/or the objective function.
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1 Introduction

In our previous contributions [6, 7] we started to analyze optimization models that deal with expenses
connected with large, especially line constructions. We will continue in this direction and deal with
convexity issues that are indispensably important from the theoretical and practical point of view.

1.1 Problem formulation

We recall here shortly the subject matter we deal with. During several last decades we notice a very con-
siderable growth of number of small as well as big engineering constructions. This growth is accompanied
by deeper regulations of the rules under which the constructions are rising. One of the most important
changes compared to the past is the growing emphasis to the environment.

Every important construction must obey the so-called Environmental Impact Assessment (EIA) im-
posed by European Union Law (see [3]). This process is in fact evaluation of impacts of the construction
to the environment and human healthy, divided into two classes and several categories:

• influence of the construction to the human healthy : noise pollution, air pollution and social-economic
(comfort) factors (life conditions, transport services and loads, emotions);

• influence of the construction to to the environment : air, climate, water, land, forests, natural
resources, flora, fauna, ecosystems, landscape, systems of ecological stability and also the tangible
property or cultural heritage.
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The detailed list of the categories is given by [4] and the summary is also presented in [6]. The impacts
are of very manifold nature – furthermore each of the factors involves many inputs and outputs and their
evaluations is not simple. This all contribute to the fact that modelling the optimization problem is not
easy and so is for calculation.

In the next section we recall the formulation of the mathematical model [7] and state some of its basic
properties. We then focus on the convexity of the set of feasible solutions; we recall some known results
from the literature that deals with convexity issues of chance-constrained probabilistic problems that can
be more or less applied to our model.

2 Model description

The traditional cost-minimizing optimization model is not considered in this paper because of difficulties
with non-linear utility function (representing the environmental impacts of the construction). Instead we
consider model where costs are incorporated as the constraint with the right-hand side representing the
budget limitation.

2.1 Uncertain optimization model

Denote x ∈ X ⊂ Rn the set of the possible compensations and arrangements ready to be used in some
construction. The values of the variable x can be discrete or continuous according to the nature of the
arrangement: they can be binary variables (to realize or not the arrangement), discrete (representing
possible variants of the arrangements) as well as continuous (dimensions and other measures of the
arrangement).

Let ξ ∈ Ξ be the random vector representing uncertainty factors, with Ξ ⊂ Rs being the predefined
support of ξ. The uncertainty factors represents traffic intensities (when building transport constructions),
efficiency of compensating constructions, quantification of subjective criteria, accidents, etc. From the
computational point of view, the probability distribution of ξ has to be known in advance.

The actual expenses of all arrangements are represented by the cost function c : X×Ξ→ R : (x; ξ) 7→
c(x; ξ). Suppose c to be a linear function of x, i. e., c(x; ξ) = cTx where c ∈ Rn are constant unit costs of
the arrangements. This simplification is not crucial in our setting; possible dependence on random factor
can be (later) incorporated in the probabilistic part of the model. Let furthermore B be the budget limit
on the expenses.

The utility function u : X × Ξ : (x; ξ) 7→ u(x; ξ) represents the factors of subjective and evaluative
character. The quantification of this function is generally difficult. In our paper, we use the approach
in which we replace the subjective utility function by a function based on the indicators of ecological
stability.

We are now ready to write down the uncertain formulation of our model

maximize u(x; ξ) subject to cTx ≤ B, x ∈ X0, (1)

where X0 ⊂ Rn represents all deterministic constraints of the model (except costs).

2.2 Chance-constrained optimization model

We first deal with subjective utility function: as already outlined we replace it by indicators of ecological
stability [4]. More precisely, let i : Rn × Ξ → RI : (x; ξ) 7→ i(x; ξ) be a function representing the values
of the EEA indicators, representing the functional dependence of the indicator value on decision vector x
and random factor ξ. Next, we introduce a parameter L representing a required limit on values of i, and
weights w ∈ [0; 1]I representing relative importance of each of indicators. The probabilistic information
about ξ is incorporated model through the probabilistic constraint; we write the resulting final model in
the form of

maximize L subject to P{wT i(x; ξ) ≥ L} ≥ 1− ε, cTx ≤ B, x ∈ X0, (2)

where 1−ε (ε ∈ [0; 1]) represents some prescribed probability of fulfilling the required limit on indicators.
The limit L is considered joint here and compensations for indicator values are allowed. Other approaches,
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such as treating the limits individually (or by groups of indicators), are possible but imply more unpleasant
issues concerning convexity of the feasibility set. We will treat convexity of the set of feasible solutions
in the next section.

3 Convexity analysis

3.1 Notion of generalized convexity

To analyze convexity properties of probability constraint of (2) we recall some results dealing with general
forms of probabilistic constraints. Denote

Xε :=
{
x ∈ X : P{g(x; ξ) ≥ 0} ≥ 1− ε

}
(3)

the set with probabilistic constraint where g : Rn×Rs → Rd is vector-valued mapping. If g is convex then
the sets X1, X0 are convex. Unfortunately these sets are not of great interest: they represent existence
and almost sure constraint fulfilling. The main “classical” result belongs to Prékopa [10] developed later
especially by Borell [1] and [2]. To state the result we need introduce the notion of r-concave functions
and measures.

Definition 1. A function f : Rd → (0; +∞) is called r-concave for some r ∈ [−∞; +∞] if

f(λx+ (1− λ)y) ≥ [λfr(x) + (1− λ)fr(y)]1/r (4)

is valid for each x, y ∈ Rd and each λ ∈ [0; 1]. The cases r = −∞, 0,+∞ are treated by continuity.

Among the r-concave functions we specify some important special cases which we enumerate in the
following list:

• r = −∞: the right hand side (RHS) of (4) is equal to min{f(x), f(y)} and f is called quasi-
concave in this case. Quasi-concave functions play very important role in the context of probabilistic
programming as we will see later;

• r ∈ (−∞; 0): f is r-concave function with negative r if fr is convex function

• r = 0: RHS of (4) is equal to fλ(x)f1−λ(y) and the function f is called logarithmically concave or
log-concave (as log f is concave function). Log-concavity is useful property in stcohastic program-
ming; many prominent probability densities share this property and the original Prékopa’s results
are formulated for log-concave functions (even that proofs are more general);

• r = 1: corresponds to classical notion of concavity;

• r ∈ (0; +∞): f is r-concave function with positive r if fr is concave function;

• r = +∞: the right hand side (RHS) of (4) is equal to max{f(x), f(y)} and f is called quasi-convex
in this case.

If f is r∗-concave for some r∗ then it is r-concave for all r ≤ r∗. In particular, every r-concave function
is also quasi-concave.

Definition 2. Probability measure P (on B(Rs)) is called r-concave if for any Borel convex set A,B ⊂
B(Rs) such that P(A) > 0,P(B) > 0, and any λ ∈ [0; 1] we have

P(λA+ (1− λ)B) ≥ [λPr(A) + (1− λ)Pr(B)]1/r

cases r = −∞, 0,+∞ are treated by continuity.

It is worth to note three important properties of r-concave probability measures:

• r-concave probability measure has r-concave distribution function;

• non-degenerate quasi-concave measure P on Rs with dimension s of the support has a density;
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• r-concave density is equivalent to r
1+mr -concave measure on convex subset Ω ⊂ Rs of dimension

m > 0 (so for r > − 1
m ).

Proposition 1 ([9], Theorems 2.5 and 2.11). If P is absolutely continuous (with respect to Lebesgue
measure), r-concave measure, and the one-dimensional components of g are quasi-concave functions of
(x, ξ) then Xε is convex set.

The assumption on r-concavity distribution is equivalent to have γ-concave probability density with
γ = r

1+rs ≥ −
1
s . Many distribution such that multivariate normal, uniform, Wishart, Beta, Dirichlet,

Gamma and others have log-concave (or at least quasi-concave) distribution, or at least for some of theirs
parameters (see e. g. [9] for details).

The above proposition plays a basement for more specific results. As r-concavity of probabilistic
distribution is not a real obstacle, this is not true for quasi-concavity of function f . The main obstacle
is that r-concavity is not preserved under addition for r < 1 nor under multiplication for r < 0. So more
specific structures are examined in the literature in order to overcome these obstacles. We concentrate
especially on situation corresponding to linear programming problems with random technology matrix;
but the available results are still very rare in this case.

3.2 Problems with random technology matrix

The classical results are that of [8] and [13]:

Proposition 2. If ξ ∈ Rs have non-degenerate multivariate normal distribution, b is constant scalar and
ε ≤ 1

2 then the function

G(x) = P{ξTx ≤ b}
is quasi-concave on D = {G(x) ≥ 1

2}, thus Xε is convex.

The next result is due to [11] and generalizes previous theorem to the case of independent normally
distributed rows of technology matrices.

Proposition 3. If a random matrix T has independent normally distributed rows such that their covari-
ance matrices are constant multiples of each other, and ε ≤ 1

2 then

G(x) = P{Tx ≤ b}

is quasi-concave on D = {G(x) ≥ 1
2} thus Xε is convex.

Recently, [12] found equivalent condition on covariance matrices under the condition of uniform quasi-
concavity of functions Gi(x) := P{ξi· ≤ bi}. Other interesting results are given by [5].

Proposition 4 ([5]). Suppose T be the random matrix with pairwise independent normally distributed
rows ξi· indexed by i having means µi and variance matrices Σi. Then Xε is convex for

ε < 1− Φ(max{
√

3, u∗})

where Φ is standard normal distribution function,

u∗ = max
i

4λ(i)max

[
λ
(i)
min

]−3/2

‖µi‖,

and λ
(i)
max, λ

(i)
min are the largest and the smallest eigenvalue of Σi.

3.3 Application to model with EEA indicators

Probabilistic constraint of the model (2) written in terms of (3) corresponds to the setting

g((x, L)T ; ξ) = wT i(x; ξ)− L.

Function g is in general non-linear and verifying convexity become hard in that case: according to
Proposition 1 one have to check if indicator function i(x; ξ) is (jointly) quasi concave, i. e. to explore
the structure of indicator function. If the indicator function depends linearly on x and ξ one can apply
results of Section 3.2:
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Theorem 5. Suppose i(x; ξ) = xTAξ, random vector ξ having joint normal distribution; assume further
ε ≤ 1

2 . Then the feasibility set of (2) is convex.

Proof. Function i(x; ξ) is normally distributed and depend linearly on x and ξ. In this case the assumption
of Proposition 2 is fulfilled and the assertion of the theorem follows directly.

Consider now the case where compensations (lack in one indicator can be superseded by surplus in
another one) are prohibited. In this case we impose individual limit Lj for each indicator and the whole
considered model becomes in fact the model with joint probability constraint:

maximize L subject to P{ij(x; ξ) ≥ Lj , j ∈ J } ≥ 1− ε, cTx ≤ B, x ∈ X0, (5)

where J is index set for individual indicator functions. Keep the (affine) linear dependence of ξ and x on
indicator function. Nevertheless, we cannot use Kataoka’s result (Proposition 2) as the model no longer
possesses single constraint row. So the covariance structure of the problem enters into consideration: we
have to check if assumption of one of Proposition 3 or 4 is fulfilled. The situation become much more
worse without normality because no general results on convexity are not known at present time; one has
to confide to approximation techniques in order to find (possibly) inner and outer convex approximation
of the problem.

4 Conclusion

We have considered probabilistic formulation of a (non-financial) optimization problem which evaluates
impacts of the activities (for example transport constructions) on the environment through so-called
indicators of ecological activity. The problem is convex if assumption of normal distribution and affine
linear dependence of indicators on decision vector and random factor is fulfilled. If this is not the case,
no theoretical results are not known and only convex approximation of the original problem has to be
considered.
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[7] Houda, M.: Using indicators of ecological stability in stochastic programming. In M. Dlouhý and
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