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Abstract. Support Vector Machines are a successful machine-learning al-
gorithm used for classification, regression and prediction of time series. We
optimize learning parameters and select the feature set with the smallest pre-
dictive error. We also explore the development of errors for predictions with
larger time skips.

We’ve applied the method for the prediction of CISS (Composite Indicator of
Systemic Stress), a stability indicator created by the European Central Bank.
We’ve chosen this indicator among other state-of-the-art indicators because of
its high frequency, which indicates a quick response to distinctive changes on
the market.

The results show that CISS can be partially explained just by its past values
up to six to eight weeks ahead, but large behaviour shifts are still surprising for
the model. We’ve also discovered that including data over three months of age
into the prediction context won’t improve the results.
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JEL classification: C13, C45, G32.
AMS classification: 68T10, 62H30, 62P20.

1 Introduction

The ongoing financial crisis has motivated lots of financial instability research in the recent years. Many
authors began to study the notions of systemic risk and systemic stress. Referencing the definitions from
Holló [4]:

Systemic risk can be defined as the risk that financial instability becomes so widespread that it
impairs the functioning of a financial system to the point where economic growth and welfare
suffer materially. Systemic stress is interpreted as that amount of systemic risk which has
materialised.

Systemic stress is usually accompanied by increases in uncertainty, disagreement among investors, asym-
metry of information between borrowers and lenders, risk aversion, flight to quality or flight to liquidity.

One of the recurring research themes is the introduction of novel indicators of financial stability (or
financial stress). These indicators capture the current or past financial situation. Some examples of
actively used indicators follow.

∙ The Laeven-Valencia index of systemic banking crises introduced in [7] is a broad, coincident indicator
for systemic financial crises. It covers 169 countries and specifies the presence or absence of a crisis
with yearly frequency since 1970.

∙ The Financial Stress Index (FSI) for 17 advanced economies [3] and its modified version for 26
emerging economies [1] introduced by the International Monetary Fund. Both are monthly indicators
of national financial system strain and rely on price movements relative to past levels or trends. The
FSI-AE index is defined for most of its countries since 1980, the FSI-EM since the end of 1996.
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∙ A Composite Indicator of Systemic Stress (CISS) in the financial system [4] introduced in the
European Central Bank. This is a short-term (weekly) composite systemic stress measure for
the EU sector aggregating five market-segment subindices: money market, bond market, equity
market, financial intermediaries and foreign exchange market. The combined index is based on
cross-correlation of subindices after a rank transformation. The original CISS is defined only after
the introduction of the Euro (1999), but the authors present a version extended up to 1987.

It would prove useful to be able to predict systemic stress and handle an emerging crisis before it actually
breaks out. We will focus on CISS since the other indicators are too sparse for our purposes.

In section 2 we present a theoretical overview of our prediction methodology and in Section 3 we
discuss its application to the prediction of CISS for various delays and present the obtained results.

2 Support vector machine regression

Support Vector Machines (SVMs) are a machine learning method introduced by Vapnik [10]. Good
introductions into the SVMs are [2], [9]; for an application of SVMs to prediction of time series see [8].

Suppose we are given examples {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)}, where x𝑖 ∈ R𝑑 are the training contexts and
𝑦𝑖 ∈ R are training targets. We seek a function 𝑓(x) that maps contexts to targets and will predict new,
previously unseen data well. Predictions 𝑦 for an unseen context x̃ will be done by evaluating 𝑓(x̃).

For the special problem of predicting a time series, the contexts x𝑖 may consist of past values, their
transformations, and external data.

2.1 The linear case

Let us first consider the linear case 𝑓(x) = ⟨w,x⟩ + 𝑏 where ⟨·, ·⟩ denotes the dot product. Following
Smola and Schölkopf [9], we will penalize training errors by the standard 𝜀-insensitive loss function ([9],
Equation 4)

|𝑧|𝜀 =

{︃
0 if |𝑧| ≤ 𝜀,

|𝑧| − 𝜀 otherwise.

We prevent overfitting by adding the regularization term ‖𝑤‖2. The trade-off between accuracy on the
training set and model complexity will be controlled by the regularization constant 𝐶 > 0.

We can now formulate the optimization problem ([9], Equation 3):

minimize
w, 𝑏, 𝜉𝑖, 𝜉*𝑖

1

2
‖𝑤‖2 + 𝐶

𝑛∑︁
𝑖=1

(𝜉𝑖 + 𝜉*𝑖 )

subject to −𝜀− 𝜉𝑖 ≤ ⟨w,x𝑖⟩ + 𝑏− 𝑦𝑖 ≤ 𝜀 + 𝜉*𝑖 , 𝑖 ∈ {1, . . . , 𝑛}
𝜉𝑖, 𝜉*𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑛}.

The Lagrange dual problem has the form

maximize
𝛼𝑖, 𝛼*

𝑖 , 𝜂𝑖, 𝜂*
𝑖

inf
w, 𝑏, 𝜉𝑖, 𝜉*𝑖

[︁ 1

2
‖𝑤‖2 + 𝐶

𝑛∑︁
𝑖=1

(𝜉𝑖 + 𝜉*𝑖 )

−
𝑛∑︁

𝑖=1

𝛼𝑖 (⟨w,x𝑖⟩ + 𝑏− 𝑦𝑖 + 𝜀 + 𝜉𝑖)

+

𝑛∑︁
𝑖=1

𝛼*
𝑖 (⟨w,x𝑖⟩ + 𝑏− 𝑦𝑖 − 𝜀− 𝜉*𝑖 )

−
𝑛∑︁

𝑖=1

(𝜂𝑖𝜉𝑖 + 𝜂*𝑖 𝜉
*
𝑖 )

]︁
subject to 𝛼𝑖, 𝛼

*
𝑖 , 𝜂𝑖, 𝜂

*
𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑛}.
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The gradient of the Lagrangian function with respect to the primary variables must vanish at the
infimum. This gives the following set of constraints:

𝑛∑︁
𝑖=1

(𝛼*
𝑖 − 𝛼𝑖) = 0,

w =

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝛼*
𝑖 )x𝑖,

𝜂𝑖 = 𝐶 − 𝛼𝑖,

𝜂*𝑖 = 𝐶 − 𝛼*
𝑖 .

After substitution we finally arrive at ([9], Equation 10):

maximize
𝛼𝑖, 𝛼*

𝑖

−1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝛼𝑖 − 𝛼*
𝑖 )(𝛼𝑗 − 𝛼*

𝑗 ) ⟨x𝑖,x𝑗⟩ − 𝜀

𝑛∑︁
𝑖=1

(𝛼𝑖 + 𝛼*
𝑖 ) +

𝑛∑︁
𝑖=1

𝑦𝑖(𝛼𝑖 − 𝛼*
𝑖 )

subject to

𝑛∑︁
𝑖=1

(𝛼𝑖 − 𝛼*
𝑖 ) = 0,

0 ≤ 𝛼𝑖 ≤ 𝐶, 0 ≤ 𝛼*
𝑖 ≤ 𝐶, 𝑖 ∈ {1, . . . , 𝑛}.

This is a quadratic convex programming problem with linear constraints and a dense dot product
matrix and as such it can be solved using well-known quadratic programming algorithms. For notes about
computing 𝑏 see [9].

Let us note that 𝑓(x) = ⟨w,x⟩+ 𝑏 can be rewritten as
∑︀𝑛

𝑖=1(𝛼𝑖−𝛼*
𝑖 )⟨x𝑖,x⟩+ 𝑏. Furthermore, it can be

shown [9] that Lagrange multipliers 𝛼𝑖, 𝛼
*
𝑖 that correspond to input vectors lying inside the 𝜀-insensitive

region |𝑓(x𝑖) − 𝑦𝑖| < 𝜀 vanish in the solution. This means that only a subset of the input examples is
needed to describe 𝑓 ; examples from this subset are called the Support Vectors.

2.2 The non-linear case

We will now describe the kernel trick which makes SVMs the algorithm of choice for many machine-learning
settings.

We want to create a (generally non-linear) mapping 𝜑 that maps inputs x𝑖 into a high-dimensional
feature space 𝐹 , and perform the whole computation in 𝐹 .

We’ve established earlier that both the optimization problem and function evaluation require only dot
products between input examples. The trick is to choose a kernel function that corresponds to the dot
product in 𝐹 ,

𝑘(x𝑖,x𝑗) = ⟨𝜑(x𝑖), 𝜑(x𝑗)⟩𝐹 ,
and can be evaluated directly from the contexts without computing the map 𝜑. This allows us to perform
computations in the larger space 𝐹 with no extra costs.

The most popular kernel choices for SVM regression are

∙ polynomial kernels 𝑘(x𝑖,x𝑗) =
(︀
⟨x𝑖,x𝑗⟩ + 1

)︀𝑝
,

∙ Gaussian radial basis function (RBF) kernels 𝑘(x𝑖,x𝑗) = e−‖x𝑖−x𝑗‖2/ 2𝜎2

, and

∙ sigmoidal kernels 𝑘(x𝑖,x𝑗) = tanh(𝜅⟨x𝑖,x𝑗⟩ − 𝑐).

For problems with a large number of training examples, the basic linear kernel 𝑘(x𝑖,x𝑗) = ⟨x𝑖,x𝑗⟩ also
enjoys some popularity because its special structure enables significant speed improvements (see e.g. [6]).

3 Application

We’ve divided the CISS dataset 𝑎 into the training set (from Jan 1991 to Sep 2007) and the test set (Oct
2007 to Dec 2010). We’ve tried to learn a model for the CISS value 𝛿 weeks ahead:

𝑦𝑖 = 𝑎𝑖+𝛿 with 𝛿 ∈ {1, 2, 4, 6, 8}.
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To find the SVM model with the least predictive error, we need to optimize the learning parameters.
These consist of

∙ the margin width 𝜀,

∙ the regularization parameter 𝐶, and

∙ the kernel parameters.

The objective function was chosen to be the average absolute prediction error on the test set.

After several trial runs, we’ve fixed the kernel class to Gaussian RBFs (it consistently gave the best
results).

The training contexts x𝑖 originally consisted only of the history {𝑎𝑖−𝐻 , . . . , 𝑎𝑖} (where 𝐻 is the age of
the oldest sample in the context), but we’ve found out that adding simple transformations improves the
results. The transformation set with the best results turned out to be

x𝑖 =

𝐻⋃︁
ℎ=0

{︀
𝑎𝑖−ℎ, 𝑎

2
𝑖−ℎ, log 𝑎𝑖−ℎ, 𝑚𝑖,ℎ, log𝑚𝑖,ℎ, 𝑀𝑖,ℎ, log𝑀𝑖,ℎ

}︀
where 𝑚𝑖,ℎ = min{𝑎𝑖−ℎ, . . . , 𝑎𝑖} and 𝑀𝑖,ℎ = max{𝑎𝑖−ℎ, . . . , 𝑎𝑖} are moving minima and maxima.

0.0

0.2

0.4

0.6

0.8

1.0

2008 2009 2010 2011

Figure 1 CISS predictions one week into the future, average absolute error = 0.0487. The dotted line
denotes the actual value of the index, the solid line denotes the predicted value.
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Figure 2 CISS predictions two weeks into the future, average absolute error = 0.0585.
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Figure 3 CISS predictions four weeks into the future, average absolute error = 0.0748.
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Figure 4 CISS predictions six weeks into the future, average absolute error = 0.0836.
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Figure 5 CISS predictions eight weeks into the future, average absolute error = 0.0934.
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All components of the context were finally normalized to zero mean and unit variance. Furthermore, it
proved beneficial to create contexts only from a subset 𝒮 of the full layout. Thus the final parameter set
to optimize was {𝜀, 𝐶, 𝜎,𝐻,𝒮}.

SVM training and classification was performed with the use of the SVMlight library [5].

Figures 1–5 depict the predictions of the best models for each time skip 𝛿. It can be seen that the CISS
index can be partially predicted just from its past values. Large behaviour shifts are, however, surprising
for the learned model. Incorporating external variables into the model might improve the predictions: this
will be a subject of further study.

The most surprising result is that the history length cap 𝐻 fluctuated between only two and three
months. This suggests that data beyond three months ago only confuses the SVM algorithm and that the
increased model complexity isn’t justified.

4 Conclusion

We’ve shown the predictability of the CISS index from only its past values for up to eight weeks ahead by
the means of a non-linear SVM model. We’ve optimized the SVM learning parameters and the context
layout to minimize prediction error.

In future research we’ll try to further improve the prediction accuracy by including additional micro-
and macroeconomic time series into the context layout. Based on context lengths of the best obtained
models, we conjecture that adding samples beyond three months in the past won’t bring any improvements.
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