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Abstract. This paper deals with asset allocation problems formulated as
multistage stochastic programming models. Dynamic models allow rebalanc-
ing the portfolio multiple times before the final investment horizon is reached.
The CVaR risk measure is used for its favorable properties and time consistent
model is developed. The risk-aversion coefficients are separate for every stage,
which covers a wide range of investment strategies. For example one could start
with an aggressive investment policy, but focus on reducing the risk as the final
stage approaches. The stock prices are assumed to be interstage independent
and to follow lognormal distribution. The Stochastic Dual Dynamic Program-
ming algorithm is then applied to solve the presented models. An extensive
numerical study based on the data from Prague Stock Exchange compares the
results obtained from static two stage models with the results from dynamic
models having multiple stages. Both cases, with or without the transaction
costs, are considered. The computational part of this work is realized in C++
language and uses CPLEX to solve the linear programs.
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1 Introduction

Mean-risk models are well-known instruments in portfolio selection analysis. These two-criteria models
both maximize the portfolio mean return as well as minimize the risk which is linked to the stock market
trading. Basics of portfolio selection theory using variance and semivariance as a measure of risk were
published in the article [7] and the book [8] by Harry Markowitz already in 1950s. Since that time,
many improvements have been proposed and implemented. There are new ways of measuring risk, let
us mention at least Conditional Value at Risk [11] (CVaR), which will be used in our model. Moreover,
several different distributions, for instance log-normal distribution, have been applied in mean-risk models.

The latest research is focused on dynamic models which allow rebalancing the portfolio multiple
times before the final investment horizon is reached, we refer to the book [4] for an extensive overview of
stochastic modeling in finance. In this paper, we present one of these models, asset allocation problem
with transaction costs formulated as multistage stochastic program, inspired by the article [12]. Wide
range of different investment strategies can be covered by the model, because risk-aversion settings can
be adjusted separately for each stage.

We solve the model using stochastic dual dynamic programming algorithm (SDDP) which originated
in the work of Pereira and Pinto [9]. SDDP-style algorithms rely on the assumption of stage-wise inde-
pendence to provide good performance for problems with multiple stages. In order to apply the SDDP
algorithm, a discrete scenario tree with finite number of nodes in each stage has to be built. This can be
done from historical market data, by sampling from some continuous-type distribution or by sampling
using the moment matching method, presented in [5]. New problems arise in the multistage setting, such
as how many descendants should be used for each stage, how to deal with the scenario count explosion or
how to estimate the distributions for every stage. From many articles dealing with these and associated
problems we refer at least to [2], [3] and [10].
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We organize the remainder of this article as follows: We present our risk-averse multi-stage model
in the next section and provide a brief description of the SDDP algorithm in Section 3. Computational
results are presented in Section 4 and we conclude and discuss ideas for future work in Section 5.

2 Asset-allocation model

Presented model is inspired by the articles [12] and [14]. Evolution of the assets price in stages t = 2, . . . , T
is supposed to be random, we denote ξt = pt as the ratio between the price of the assets in stage t and
stage t − 1. The first stage portfolio value is set to be equal to 1 and only the probability distributions
governing future realizations ξ2, . . . , ξT are assumed known, independent of each other. The realization
of ξ2 is known when decisions x2 must be made and so on up to the stage T . The decisions vectors xt
contain the optimal asset allocation strategy, while the term ptxt−1 captures the state of the system,
meaning the total value of the assets in our portfolio. The history of the data process up to time t will
be denoted ξ[t], meaning ξ[t] = (ξ1, . . . , ξt).

Our model gives user the possibility to choose risk aversion coefficient and confidence level λt, αt ∈
(0, 1) separately for each stage of the model. In order to give a nested formulation of the model we will
introduce following function which calculates expectation and risk coming from a random loss Z:

ρt,ξ[t−1]
[Z] = (1− λt)E

[
Z|ξ[t−1]

]
+ λt CVaRαt

[
Z|ξ[t−1]

]
. (1)

We will suppose that short-selling of assets is not allowed. The risk-averse multistage asset-allocation
model with T stages can be written in the following nested form:

min
1Tx1=1,x1≥0

ρ2,ξ[1]

[
min

pT
2 x1=1Tx2,x2≥0

−1Tx2 + ρ3,ξ[2]

[
min

pT
3 x2=1Tx3,x3≥0

−1Tx3 + · · ·

+ · · ·+ ρT,ξ[T−1]

[
min

pT
TxT−1=1TxT ,xT≥0

−1TxT

]]]
.

(2)

Presented model differs from the other possible approaches by taking the risk measure as a function of
the recourse value at each stage. It provides easy and explanatory policy construction rules and by nesting
the optimal values we achieve the property of time consistency, which is also an important indicator about
the model quality, see [15]. The interpretation of the objective function is not straightforward, but it can
be viewed as the cost we would be willing to pay at the first stage instead of incurring the sequence of
random costs Z1, . . . , ZT , see [13].

Our model also allows dynamic programming equations to be developed, for the detailed description
we refer again to the article [14]. Using the definition of Conditional Value at Risk:

CVaRα [Z] = min
u
u+

1

α
E [Z − u]+ (3)

in (1) the recourse value Qt(xt−1, ξt) at stage t = 2, . . . , T equals the optimal value of the problem:

min
xt,ut

− 1Txt + λt+1ut +Qt+1(xt, ut)

s. t. pTt xt−1 = 1Txt

xt ≥ 0,

(4)

with QT+1(·) ≡ 0 and recourse function calculated from the following equation:

Qt+1(xt, ut) = E
[
(1− λt+1)Qt+1(xt, ξt+1) +

λt+1

αt+1

[
Qt+1(xt, ξt+1)− ut

]
+

]
. (5)

Please note that in contrast with the risk-neutral multistage problem, additional decision variable ut
is introduced to represent the estimated Value at Risk level, see (3). The recourse function does not
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depend on ξ[t], because the process is assumed to be stage-wise independent. First stage optimal solution
of the stochastic program is given by:

min
x1,u1

λ2u1 +Q2(x1, u1)

s. t. 1Tx1 = 1

x1 ≥ 0.

(6)

After the introduction of auxiliary variables ut, the problem was converted to a case that resembles
the risk-neutral model. However, there is still nonlinear function present in our equations (4)–(5), and
the standard version of the SDDP algorithm cannot be directly applied.

We still have to extend our model to cover possible transaction costs. We will consider the case where
transaction costs are proportional to the value of the assets sold or bought, ftr denoting the relative cost.
The balancing equation between stage t− 1 and stage t portfolios has to be modified to include the total
cost of ftr1

T |xt − xt−1|. Converting to linear formulation we replace the equations (4) with following
dynamic programming equations (t = 2, . . . , T ) :

min
xt,ut

− 1Txt + λt+1ut +Qt+1(xt, ut)

s. t. pTt xt−1 − ftr1Tzt = 1Txt

zt ≥ xt − xt−1

zt ≥ xt−1 − xt
xt ≥ 0.

(7)

We suppose that all the initial capital is used for investment into stocks, meaning transaction costs
are constant for the first stage and can be therefore omitted. The first-stage stochastic program remains
in the following form:

min
x1,u1

λ2u1 +Q2(x1, u1)

s. t. 1Tx1 = 1

x1 ≥ 0.

(8)

3 Stochastic dual dynamic programming

We provide only a brief description of the algorithm and refer again to the articles [9] and [14] for more
details. The algorithm performs series of iterations until satisfactory solution is found, meaning that
some stopping rule, given lower and upper bound, is satisfied. We solve the following problem at stages
t = 2, . . . , T :

min
xt,ut

− 1Txt + λt+1ut + θt

s. t. pTt xt−1 − ftr1Tzt = 1Txt

zt ≥ xt − xt−1, zt ≥ xt−1 − xt

θt ≥ Q̂jt +
(
gjt

)T
(xt, ut) j = 1, . . . , C

xt ≥ 0.

(9)

Here, θt in the objective function, coupled with cut constraints θt ≥ Q̂jt +
(
gjt

)T
(xt, ut), forms the outer

linearization of the recourse function Qt+1(xt, ut). The structural and nonnegativity constraints simply
repeat the same constraints from the model. In the final stage T cut constraints and θt term in objective
function are omitted.

During a typical iteration of the SDDP algorithm, cuts have been accumulated at each stage. On a
forward pass we sample a number of linear paths through the tree. As we solve a sequence of problems
along these forward paths, the cuts that have been accumulated so far are used to form decisions at each
stage. The solutions found form a policy which does not anticipate the future. The costs incurred along
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all the sampled forward paths through the tree can be used to estimate the expected cost of the current
policy, thus providing the upper bound.

In the backward pass of the algorithm, we add cuts to the collection defining the current approximation
of the future cost functions. We do this by solving the descendant nodes of each node in the linear paths
from the forward pass, except in the final stage T . To form a cut, we use the objective values and
subgradients of the descendant nodes and employ the chain rule to calculate the subgradient of function
Qt+1(xt, ut). The cuts collected at any node in stage t apply to all the nodes in that stage, therefore
only one set of cuts in maintained for each stage. This complexity reduction is possible because of the
interstage independence assumption. The optimal value of the first-stage problem provides the lower
bound.

4 Empirical study

We used weekly data of the most important assets traded on the Prague Stock Exchange, November 2007
to March 2012. The week-to-week ratios were adjusted to include the stock dividends. The data summary
can be found in the Table 1. We have fitted multidimensional correlated log-normal distribution to the
adjusted price ratios, and the scenario tree was then constructed by sampling from this distribution,
using the polar method for normal distribution sampling. The L’Ecuyer random generator was used to
generate the required uniform random variables. Every computation including the sampling process was
repeated 10 times, allowing to compute standard deviations of the solutions and objective values. There
are many software products available for the purpose of stochastic optimization, for an overview see [6] or
[16], but there is nothing available for the risk-averse version of the SDDP algorithm. Our computation
was therefore implemented in own C++ software, using CPLEX to solve the required linear programs
and Armadillo library for matrix computations. The confidence level was always set to 5%.

asset mean std. deviation

AAA 0.9980 0.0716

CETV 0.9929 0.0995

ČEZ 0.9994 0.0406

ERSTE GROUP BANK 0.9983 0.0795

KOMERČNÍ BANKA 1.0018 0.0543

ORCO 0.9899 0.0938

PEGAS NONWOVENS 0.9995 0.0398

PHILIP MORRIS ČR 1.0035 0.0368

TELEFÓNICA C.R. 1.0004 0.0266

UNIPETROL 0.9986 0.0506

Table 1: Data summary

We evaluated the model with two different settings of risk coefficients, λt = 1
2 and λt = t−1

T . The
first represents neutral and stable risk-aversion, while the latter means that we want to be sure about the
final portfolio value by being more risk-averse as the final stage approaches. Both cases, with transaction
costs of 0.3% and without transaction costs were considered. We have computed the optimal first-stage
decisions for models with 2, 3 and 5 stages. In the following Table 2 we show the setup for the scenario
trees used in our algorithm.

stages descendants per node total scenarios

2 50, 000 50, 000

3 1, 000 1, 000, 000

5 1, 000 1012

Table 2: Testing problems setup

In all the testing cases, only three assets play a significant role in our portfolio: ČEZ, PHILIP
MORRIS ČR and TELEFÓNICA C.R.. We will exclude the other assets from our results to ease the
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orientation. We present the results without any transaction costs first, showing the optimal first-stage
decisions for constant and growing risk-aversion settings in Tables 3 and 4. The difference between the
optimal portfolios for 2, 3 or 5 stages is not significant in the constant risk coefficients setting. In the
second case we can see a slight movement to the riskier asset in the first-stage decision, putting more
weight to PHILIP MORRIS ČR. This is expected as the risk settings target mostly the expectation part
of our recourse function in the first stage.

stages ČEZ PHILL TELE

2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0510 (0.0459) 0.3112 (0.0537) 0.6273 (0.0707)

5 0.0450 (0.0307) 0.3340 (0.0268) 0.6043 (0.0571)

Table 3: Optimal decisions (std. deviations) with ftr = 0 and λt = 1
2

stages ČEZ PHILL TELE

2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0597 (0.0645) 0.3429 (0.0650) 0.5792 (0.0920)

5 0.0392 (0.0415) 0.4325 (0.0678) 0.4975 (0.0652)

Table 4: Optimal decisions (std. deviations) with ftr = 0 and λt = t−1
T

Next we show the optimal first-stage decisions with transaction costs of 0.3% in the Tables 5 and 6.
It should be noted that in accordance with our model transaction costs have no effect in 2-stage models.
We observe that the presence of the transaction costs reduces the differences found in the previous case
with varying risk coefficients. We believe that this follows from the fact that varying risk coefficients
require the investor to change the portfolio in every stage significantly. However, with the transaction
costs in mind, this could be more expensive than the loss coming from holding slightly suboptimal, but
stable portfolio. The impact of the transaction costs should be weaker in cases where stages cover longer
time periods instead of just weeks.

stages ČEZ PHILL TELE

2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0405 (0.0279) 0.2977 (0.0322) 0.6438 (0.0409)

5 0.0643 (0.0208) 0.3115 (0.0231) 0.6149 (0.0323)

Table 5: Optimal decisions (std. deviations) with ftr = 0.3% and λt = 1
2

stages ČEZ PHILL TELE

2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0412 (0.0389) 0.3175 (0.0258) 0.6192 (0.0403)

5 0.0493 (0.0240) 0.3274 (0.0346) 0.6168 (0.0293)

Table 6: Optimal decisions (std. deviations) with ftr = 0.3% and λt = t−1
T

The impact of adding more stages to the stage-independent model with constant risk-aversion settings
tends to be minimal. This could, however, be different in the stage-dependent case. On the other hand,
varying risk coefficients provide distinct solutions even with the independence assumption. In order to
handle stage-dependent models, we would need to use different algorithm to solve the models and more
complex estimation procedures.

5 Conclusion

We have developed a simple stock asset allocation model for the multistage setting and successfully
employed the SDDP algorithm to solve it. We provide results based on assets from Prague Stock Exchange
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for 2, 3 and 5-stage problems. Our results show that the nested model with constant risk-aversion
coefficients provides similar results in both the 2-stage and multistage setting. On the other hand, it
provides distinct behavior in the case when varying risk coefficients are used to represent more complicated
investment strategies. We have also evaluated the effect of transaction costs in our model and pointed
out that their presence could draw the dynamic model behavior closer to the static one.

The future experiments should include problems with more stages as well as different time periods
represented by the stages, especially months and years. We would also like to focus on recent ways of
measuring risk, see for example [1]. The stage-dependent case should also be covered, although it requires
the use of different algorithm than SDDP.
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[2] Dupačová, J., Consigli, G. and Wallace, S. W.: Scenarios for multistage stochastic programs, Annals
of Operations Research 100 (2000), 25–53.
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