
Non-stationary volatility with highly anti-persistent

increments: An alternative paradigm in volatility

modeling?

Ladislav Krǐstoufek 1

Abstract. We introduce the alternative paradigm to volatility modeling.
On the example of three stocks of highly capitalized companies, we show that
volatility process is non-stationary and its logarithmic transformation together
with the logarithmic increments are approximately normally distributed while
the latter are strongly anti-persistent. Together with the assertion that loga-
rithmic returns are normally distributed, and uncorrelated with time-varying
volatility, we propose the new returns-generating process, which is able to re-
markably mimic the real-world series and the standard stylized facts – uncor-
related returns with heavy tails, strongly autocorrelated absolute returns and
volatility clustering. The proposed methodology opens a wholly new field in
research of financial volatility.
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1 Introduction

Accurate modeling and forecasting of volatility is one of the biggest challenges in financial economics and
econometrics. Historically, there are four major groups of volatility forecasting approaches – historical
volatility, conditional heteroskedasticity models, stochastic volatility models, and implied volatility mod-
els. These approaches are nicely reviewed and compared in two studies of Poon & Granger [13, 14]. Poon
& Granger [14] argue that the implied volatility models outperform the others, followed by the historical
volatility models, in volatility forecasting. This is a rather interesting, and disturbing, finding since the
Black-Scholes formula is known to be based on highly unrealistic assumptions of the returns process.
This might imply that the other approaches are actually not optimal and there is some other approach
closer to reality.

In this paper, we propose a new approach to volatility modeling. Based on a simple statistical
analysis, we show that volatility can be effectively modeled as a non-stationary process with highly
anti-persistent logarithmic increments, which are, moreover, normally distributed. By doing so, we are
able to mimic the basic stylized facts of the financial returns – no autocorrelation, highly persistent
absolute returns, non-normality, fat tails, and volatility clustering [3]. Analyzing the real-world data,
we are able to state seven basic Claims and argue that the logarithmic returns are uncorrelated and
normally distributed with approximately zero mean and time-varying standard deviation. The logarithm
of the standard deviation is non-stationary and approximately normally distributed with approximately
normally distributed increments which are stationary and highly anti-persistent. Based on these findings,
we are able to reconstruct the series of returns, which resemble the actual financial returns and the stylized
facts very closely.

The paper is structured as follows. In Section 2, we present the basic methodology. In Section 3,
we describe the dataset and present the crucial findings about the process of volatility. In Section 4, we
show simulations for estimated parameters. Section 5 concludes.
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2 Methodology

Long-range dependence is highly connected to the Hurst effect, i.e. a situation characteristic by long
periods when the series is above the mean which are followed by long periods when the series is below
the mean of the series while the series still remains stationary, and so also Hurst exponent H. A critical
value of Hurst exponent is 0.5 and suggests two possible processes. H being equal to 0.5 implies either
an uncorrelated or a short-term dependent process. For H > 0.5, auto-covariances of the process are
positive at all lags so that the process is labeled as persistent. On the other hand, for H < 0.5, the
process is said to be long-range dependent with negative correlations or anti-persistent. The persistent
process is visibly locally trending while the anti-persistent process switches signs more frequently than a
random process would [1].

Hurst exponent H is connected to parameter d of fractional integration so that H = d + 0.5. Long-
range dependent processes are frequently defined in two domains – time and frequency:

• A stationary process with an autocorrelation function ρ(k) decaying as ρ(k) ∝ k2H−2 for k →∞ is
called long-range dependent with Hurst exponent H.

• A stationary process with a spectral density f(λ) following f(λ) ∝ |λ|1−2H for λ → 0 is called
long-range dependent with Hurst exponent H.

Note that a notion of long-range dependence is tightly connected to stationarity of the process, which
is obvious from both presented definitions. Without stationarity, there is no standard long-range depen-
dence. To check for (non-)stationarity, we apply two standard tests – ADF [5] and KPSS [11]. ADF has
a null hypothesis of a unit root and can take lags of the differenced series into consideration and thus
controlling for the memory effects. KPSS, on contrary, has a stationarity null hypothesis and also can
control for memory effects with a use of auto-covariance adjusted variance with Barlett weights [8].

As we are interested primary in long-range dependence and not necessarily in a specific value of H or
d, we use (modified) rescaled range and rescaled variance analyses for testing the presence of long-range
dependence in the studied process. For more details, see [12, 8].

Lo [12] proposed the modified rescaled range analysis (M-R/S) as a generalization of the classical
rescaled range analysis [10] to control for short-term correlations. With a use of adjusted standard

deviation SM =

√
S2 + 2

∑ξ
j=1 γj

(
1− j

ξ+1

)
, where S2 is the standard deviation of the returns, γj is the

jth auto covariance of the process up to lag ξ, the V statistic is defined as Vυ = (R/S)υ√
υ

, where R/S is a

range of the profile of the series (cumulative deviations from the mean of the original series) standardized
by the standard deviation of the returns process. For our purposes, we set υ = T to test for the presence
of long-range dependence in the underlying process by the means of V statistic [12, 10].

Rescaled variance analysis (V/S) was proposed [8] as a modified version of KPSS statistic, which is
usually used for testing of stationarity but was also shown to have good power for series with long-term
memory. The procedure is very similar to the modified rescaled range analysis and differs in a use of a
sample variance of the profile of the series instead of the range. As an alternative to the V statistic, the

M statistic is defined as Mυ =
var(Xt,In )

υ(SMIn )2
. Note that the modified standard deviation SM is used so that

the method is robust to short-range dependence as well. Variance of the M statistic is much lower than
the one of R/S and M −R/S so that the confidence intervals are much narrower and the method is thus
more reliable. Similarly to R/S and M −R/S, one needs to follow the steps of the R/S if estimating H
or set υ = T and construct M statistic if only testing for the presence of long-range dependence in the
process, which is actually the case in our study.

The bootstrap method has been proposed to deal with the statistical properties of small samples
[6]. The basic notion behind the procedure is resampling with replacement from the original series and
repeated estimation of a specific parameter. By shuffling, a distribution of the original series remains
unchanged while possible dependencies are distorted. Hypothesis can be then tested with a use of p-
values based on the bootstrapped estimates. For our purposes and for the time series analysis in general,
the simple bootstrap is not enough as the shuffling rids us not only from the long-range dependence
but the short-range dependencies as well. Srinivas & Srinivasan [15] proposed a modified method which
retains the short-term dependence characteristics but lacks the long one – the moving block bootstrap
with pre-whitening and post-blackening.
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For our purposes, we use AR(1) process for pre-whitening and post-blackening and ζ = 20. Such choice
of ζ should be sufficient for ridding of the potential long-range dependence while the other properties re-
main similar to the original process. The procedure is repeated for lags ξ = 0, 1, 2, 5, 10, 15, 30, 50, 75, 100
for both modified rescaled range analysis and rescaled variance analysis with B = 1000 bootstrap repeti-
tions. As will be visible in the following sections, the analyzed series are on the edge between stationarity
and non-stationarity, and we will eventually analyze the first differences of the series. However, for such
boundary cases, there is a high risk of over-differencing which would inflict MA(1) process in the series.
To control for this, we also apply the moving block bootstrap with the same parameters as noted before
but with MA(1) for pre-whitening and post-blackening. This way, we can be more confident about our
findings while controlling for the most problematic cases. Let us now turn to the volatility estimate
choice.

There are various estimators of daily volatility (or variance) ranging from very simple absolute and
squared returns through model based estimators (e.g. GARCH or implied volatility based) to range-based
estimators and realized variance [2]. From many possibilities, we choose Garman–Klass estimator [7]:

σ̂2
GK,t =

(log(Ht/Lt))
2

2
− (2 log 2− 1)(log(Ct/Ot))

2 (1)

where Ht and Lt are daily highs and lows, respectively, and Ct and Ot are daily closing and opening
prices, respectively. This estimator does not take overnight volatility into consideration but is very simple
and efficient (much more efficient than absolute and various power-returns, comparable with other range-
based measures and less efficient than the realized variance) [2]. Even though the realized variance would
be a more efficient choice, it is not easily obtainable for all assets while for the Garman–Klass estimator,
all necessary variables are available freely for practically all financial assets.

3 Data and statistical analysis

We analyze series of three stocks with one of the highest capitalizations in the US markets – AAPL
(Apple Inc.), IBM (International Business Machines Corporation) and MSFT (Microsoft Corporation) –
between 3.1.2000 and 29.2.2012 (3059 observations). Even though all three companies are technological,
they underwent very different dynamics during the analyzed period. Apple, as a favorite of the most
recent days, has grown remarkably while IBM and Microsoft have been rather stagnant. IBM and MSFT
experienced very similar dynamics of volatility as well as its levels. AAPL, on contrary, shows markedly
higher average values of volatility with more extreme values than the other two. Nevertheless, we do not
observe any drastic jumps in the volatility levels and we rather find smooth transitions from lower to
higher levels or vice versa.

As the Garman–Klass estimator does not take overnight dynamics into consideration, we analyze daily
logarithmic returns defined as rt = log(Ct) − log(Ot) as well as the standardized returns rst,t = rt

σ̂GK,t
.

We find that the raw returns are fat-tailed and positively skewed while the standardized returns are very
close to having normal tails. This result is supported by Jarque-Bera test – the raw returns are not
normally distributed but the standardized returns are very close to being normally distributed. Based
on Ljung-Box test, we find no significant autocorrelations in the first thirty lags for the standardized
returns. Further, we analyzed the distributional properties of volatility process and with support of the
QQ plots and Jarque-Bera tests, which are not shown here, we uncover that the process of volatility is far
from being normally distributed whereas its logarithmic transformation and the increments of logarithmic
volatility are approximately normally distributed. Based on these findings, we propose the first three
Claims1:

Claim 1 Logarithmic open–close returns are uncorrelated and normally distributed with time varying
volatility ≈ N(0, σt).

Claim 2 Logarithmic volatility is close to being normally distributed with mean µlog σ.

Claim 3 Increments of logarithmic volatility are close to being normally distributed ≈ N(0, σ∆).

Now, we focus on an essential question of stationarity of the series. The results for ADF and KPSS
tests for various lags are summarized in Table 1. We use lags 1, 10 and 100 to control for practically

1All ”Claims” presented in this paper should be taken as approximate results. Nevertheless, we show later in the text
that these ”Claims” can be used to construct the series which strongly resemble the basic stylized facts of the financial
returns.
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KPSS(1) KPSS(10) KPSS(100) ADF(1) ADF(10) ADF(100)

AAPL 43.8283∗∗∗ 11.2969∗∗∗ 1.7515∗∗∗ −18.8717∗∗∗ −6.3622∗∗∗ −2.2830

IBM 20.5034∗∗∗ 4.7213∗∗∗ 0.7410∗∗∗ −15.0817∗∗∗ −5.7168∗∗∗ −3.1221∗∗

MSFT 21.2672∗∗∗ 5.0439∗∗∗ 0.7780∗∗∗ −16.1605∗∗∗ −5.9202∗∗∗ −2.6700∗

logAAPL 57.5655∗∗∗ 13.8110∗∗∗ 1.9881∗∗∗ −16.5976∗∗∗ −5.6643∗∗∗ −1.7975

log IBM 26.2098∗∗∗ 5.9606∗∗∗ 0.8626∗∗∗ −14.8127∗∗∗ −5.4914∗∗∗ −2.6609∗

logMSFT 24.8671∗∗∗ 5.7543∗∗∗ 0.8176∗∗∗ −15.9073∗∗∗ −5.2080∗∗∗ −2.2931

∆ logAAPL 0.0012 0.0055 0.0391 −62.8961∗∗∗ −24.8072∗∗∗ −7.7096∗∗∗

∆ log IBM 0.0009 0.0038 0.0241 −63.5708∗∗∗ −23.2364∗∗∗ −6.7480∗∗∗

∆ logMSFTL 0.0015 0.0072 0.0431 −64.9717∗∗∗ −24.9563∗∗∗ −7.1949∗∗∗

Table 1: Stationarity tests for σ̂GK . KPSS with the null hypothesis of stationarity and ADF with the null
hypothesis of a unit root. ∗, ∗∗ and ∗∗∗ for significance at 10%, 5% and 1% significance level, respectively.

no memory, short memory and long-term memory, respectively. The results are quite straightforward.
Firstly, volatility process is neither stationary not an evident unit root process. Secondly, the same is
true for the logarithmic transformation of volatility. Moreover, the results are much stronger here as
the series are very close to being normally distributed which is assumed for the tests. Interestingly,
after controlling for long-range dependence (100 lags), we cannot reject the unit root of the series. This
indicates that after controlling for long-range dependence in the increments, we cannot reject unit root for
the logarithmic volatility. Thirdly, increments of the logarithmic volatility are asymptotically stationary
even after controlling for long-term memory. Based on these findings, we propose three other Claims:

Claim 4 Volatility and logarithmic volatility are non-stationary.

Claim 5 Logarithmic volatility is close to a unit root process after controlling for long-term memory.

Claim 6 Increments of logarithmic volatility are asymptotically stationary.

Therefore, it is needed to analyze the increments of logarithmic volatility and its correlation structure.
The autocorrelation and partial autocorrelation functions, not shown here, share a common pattern for all
three analyzed series – strongly negative autocorrelation at the first lag for ACF which vanishes for further
lags, and negative partial autocorrelations which decay slowly to zero for PACF. This is indicative for two
possible processes – a strong MA(1) process or a strongly anti-persistent ARFIMA(0,d,0) process [9, 4].
Debowski [4] actually shows that ARFIMA processes can be generalized so that we obtain stationary
and invertible processes even for anti-persistent processes with d ∈ (−1, 0), i.e. H ∈ (−0.5, 0.5). To
test for anti-persistent processes while still controlling for short-term memory as well as potential over-
differencing2, we use modified rescaled range analysis and rescaled variance analysis with moving block
bootstrap p-values for the null hypothesis of no anti-persistence with AR(1) and MA(1) processes in
pre-whitening and post-blackening procedures. The results for ξ = 0, 1, 2, 5, 10, 15, 30, 50, 75, 100 are
summarized in Table 2. We observe that the results for both AR(1) and MA(1) controls are practically
the same – for short to medium lags, we reject the ”no anti-persistence” null hypothesis, while for long
lags, we do not. However, it is hard to distinguish between short and long-term memory for such long
lags so that we treat the series as anti-persistent. For further discussion of the issue, see [1]. Based on
these results, we propose the last Claim:

Claim 7 Increments of logarithmic volatility are strongly anti-persistent with d ∈ (−1, 0).

4 Simulations

Based on all the Claims we made, we now try to reconstruct the series with the observed statistical
properties and observe whether these are in hand with the real financial series. To do so, we need to
estimate three parameters – µlog σ, σ∆ and d. We then simulate the series of logarithmic returns in the
following way. First, we simulate ARFIMA(0,d,0) process3 for increments of logarithmic volatility with
a standard deviation of σ∆. Second, we integrate the series and adjust it so that the average value of
the integrated series is µlog σ. Third, we take the exponential of the integrated series to get the series of

2Since the unit root tests have low power when too many lags are taken into consideration, it is possible that taking the
first differences of potentially spuriously detected unit root process imposes a strong moving average process, MA(1)

3We choose ARFIMA(0,d,0) because we need an anti-persistent Gaussian process which allows for strong anti-persistence.
ARFIMA is an obvious and logical choice.
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the time-dependent standard deviation. In the last step, we use the standard deviation for uncorrelated
normally distributed series with zero mean.

ξ VA MA VI MI VM MM VA MA VI MI VM MM

0 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.005 0.000 0.000 0.000

1 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.004 0.001 0.000 0.003

2 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.001

5 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.000 0.003

10 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.003 0.000 0.001 0.002

15 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.003 0.000 0.000 0.002

30 0.009 0.000 0.004 0.000 0.000 0.000 0.021 0.000 0.007 0.000 0.000 0.005

50 0.071 0.000 0.015 0.000 0.006 0.003 0.103 0.001 0.022 0.000 0.009 0.022

75 0.393 0.015 0.004 0.000 0.028 0.018 0.405 0.050 0.003 0.000 0.043 0.048

100 0.770 0.068 0.009 0.000 0.161 0.083 0.714 0.193 0.004 0.000 0.155 0.139

Table 2: Anti-persistence tests – bootstrapped p-values for the null of ”no anti-persistence” controlling for
AR(1) [left side] and MA(1) [right side] process. ξ stands for the number of lags taken into consideration
for standard deviation SM for V and M statistic. Notation ”A”, ”I” and ”M” stand for AAPL, IBM and
MSFT, respectively

The average logarithmic volatility µlog σ is -3.9962, -4.4959 and -4.3439 for AAPL, IBM and MSFT,
respectively. The standard deviation of the increments of the logarithmic volatility σ∆ is 0.4817, 0.4388
and 0.4463 for AAPL, IBM and MSFT, respectively. The biggest issue is the estimation d because
majority of d and H estimators are constructed primarily for persistent processes with d > 0, i.e. H > 0.5,
and their finite sample performance for anti-persistent processes has not been seriously discussed in the
literature yet. To overcome this issue, we analyzed the simulations for −0.9 ≤ d ≤ −0.1 with a step of
0.1. The other two parameters are set to µlog σ = −4.5 and σ∆ = 0.45.

Due to lack of space, we only show the simulations for the process which resembles the real-world
financial series the best, i.e. d = −0.5, in Fig. 1. In the figure, we show the simulated standardized
returns, simulated standard deviation process and autocorrelation function of the absolute returns. We
observe that the simulations mimic the financial stylized facts remarkably – returns are uncorrelated (not
shown here), volatility clustering is apparent, heavy tails are obvious and persistence of the absolute
returns is visible as well (while the level of autocorrelations is close to 0.2 for all presented lags, which is
exactly what is observed for empirical series [3]).
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Figure 1: Simulated process with µlog σ = −4.5, σ∆ = 0.45 and d = −0.5. (left) Standardized returns,
(right) standard deviation process, and (bottom) autocorrelation function of absolute returns.
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5 Conclusions

We introduced the alternative paradigm to volatility modeling of financial securities. On the example of
three stocks of highly capitalized companies, we showed that volatility process is non-stationary and its
logarithmic transformation together with logarithmic increments are approximately normally distributed.
Further, the increments have been shown to be highly anti-persistent. Together with the assertion that
logarithmic returns are normally distributed, and uncorrelated with time-varying volatility, we proposed
the new returns-generating process. Note that the whole procedure is based on empirical observations
without any limiting assumptions. We are able to construct the returns series which remarkably mimic the
real-world series and posses the standard stylized facts – uncorrelated returns with heavy tails, strongly
autocorrelated absolute returns and volatility clustering. Therefore, the proposed methodology opens a
wholly new field in research of financial volatility. As this paper rather introduces the framework, there
are many possibilities for further research in the field.
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