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Abstract. A new way of comparing models for forecasting was created. The
idea was to create a simple game in which the individual compared models
would compete against each other. Therefore, inspired by the heterogeneous
agent models an artificial market was created. Compared models act in the
artificial market as forecasting strategies of agents who trade on the market.
There are traded one risky asset paying a dividend and one risk-free asset in the
artificial market. The way how agents trade (buy or sell risky asset) affects the
price of risky asset, which in turn influences their expectations and therefore
their subsequent decisions whether to buy or sell. Moreover, each agent can
recalculate parameters of his strategy, if he is not satisfied with its performance.
So the forecasting strategies and the artificial market evolve side by side. It
remains only to add that the winning model is the one which earns the most
money.
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1 Introduction

In this paper are compared ARMA models as classic delegates of linear models, neural networks as
delegates of non-linear models and other simple predictive models. The forecasting models are not
compared using real data as it is customary to do. Accuracy of forecasts or their standard deviations are
not calculated. Instead, a new, unconventional method for comparing strategies was created. The models
are compared in an artificial stock market. Traders, or agents, in the market use the aforementioned
models as forecasting strategies. The best model among them is simply the one that earns the most
money. It is also important to create an artificial stock market that has similar characteristics to the real
market. The characteristics of the artificial market are therefore also studied and the artificial market is
built to be conformable to the real one.

The structure of the market is inspired by several papers (see next section), most features are derived
but several are products of own invention. The aim of this work is to create new way of comparing
forecasting strategies and to compare primarily performance of linear and non-linear models.

2 Artificial stock market

The model which simulates market environment was inspired mostly by [2], [7], [6] and [8]. Two assets are
traded in the market and no transaction costs. The first is a risk-free asset which is perfectly elastically
supplied and has a piecewise linear rate of return rt. The dynamics of the risk-free asset is product of
own invention and is given by the following formula

rt+1 = rt + εr,tηr,t∆r, (1)

where r0 = 5 × 10−5, ∆r = 5 × 10−6 are constants, εr,t is alternatively distributed random variable
(εr,t = 1 with probability pε = 10−2, otherwise εr,t = 0) and ηr,t is another alternatively distributed
random variable (ηr,t = 1 with probability pη = 0.5, otherwise ηr,t = −1). There is one more condition
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stating that rt is always positive, i.e. it holds that rt > 0, ∀t. It should be noted that agents don’t have
to forecast the change of rt because it is always known ahead. Thus rt can be interpreted as short interest
rate. Traders make a deposit with this safe short interest rate when they have redundant money.

The second asset is a risky stock whose price at time t is denoted by pt. The risky stock can be
divided into endlessly small pieces and pays dividend dt at time t; the dividend is chosen (as in [6]) to
follow the stationary AR process

dt+1 = d̄+ ρ(dt − d̄) + εd,t+1, (2)

where ρ = 0.95 is chosen this way to provide a persistent process which is still stationary, d̄ = 0.05 is a
constant and εd,t ∼ N(0, 10−2).

There are 8 groups of traders. Most of the traders predicts the future changes of price and future
dividend itself. So they don’t predict the future price of the risky asset itself, but a change from the
last known value because it is assumed (in accordance with the real market) that the price process is
not stationary. All traders forecast the future price (or price change) and dividend using their lagged
values. As in [2] and many other heterogeneous-agent models, it is assumed that all traders maximize
their expected utility function. It is also assumed that all traders have the same constant absolute risk
aversion utility function U , with the same risk aversion parameter λ = 1. Let Wi,t denote the wealth of
trader i at time t. Furthermore, let hi,t be the number of agent i’s shares at time t, then trader’s goal is
to maximize the expected utility at time t+ 1 given information up to time t over his number of shares,
i.e.,

max
hi,t

E[U(Wi,t+1)|It] = Ei,t[U(Wi,t+1)], (3)

where It denotes the information set available at time t. Under the assumption of exponential CARA
utility function and the Gaussian distribution of forecasts, the optimal number of shares at time t+ 1 is
given by the following ratio

h∗
i,t+1 =

Ei,t[pt+1 + dt+1]− (1 + r)pt
λσ2

i,t

, (4)

where σ2
i,t is the conditional variance of pt+1 + dt+1 given It. Traders differ only in their forecasting

strategies, i.e., the way they calculate Ei,t[pt+1 + dt+1]. The conditional variance of pt+1 + dt+1, i.e., the
term σ2

i,t is estimated in the same way by all traders. Following [2], the estimate of conditional variance
is given by

σ2
i,t = (1− θ)σ2

t−1|n + θ(pt + dt − Ei,t−1[pt + dt])
2, (5)

where θ = 0.01333, n = 10

σ2
t|n =

∑n−1
j=0 [Pt−j − P̄t|n]

2

n− 1
(6)

with

P̄t|n =

∑n−1
j=0 Pt−j

n
. (7)

2.1 Price evolution

The model of price evolution is inspired by [2] and [8]. According to the previous section, h∗
i,t will be

used for the desired number of risky shares at time t, while hi,t will denote the actual number of shares
held. Let bi,t, be the number of shares that trader i would like to buy and let ai,t be the number of shares
which he would like to sell, i.e.,

bi,t =

{
h∗
i,t − hi,t−1, h∗

i,t ≥ hi,t−1,

0, otherwise.
(8)

ai,t =

{
hi,t−1 − h∗

i,t, h∗
i,t < hi,t−1,

0, otherwise.
(9)

Let N be the total number of traders. If Bt =
∑N

i=1 bi,t denotes the overall demand for the risky

asset and At =
∑N

i=1 ai,t the overall supply of the risky asset, then the number of shares held by trader i
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at time t is dependent on the number of shares he/she wanted to buy/sell. Traders’ offers and demands
are first sorted in descending order, subsequently the offers, respectively demands are satisfied as long
as there are some demands, respectively offers. So the bigger volume of an offer/demand the bigger
probability that it will be satisfied.

The price adjustment is based on the excess demand Bt − At, it is inspired by (but not completely
adopted from) [2] and is given by

pt+1 = pt · [1 + β(Bt −At) ·min(At, Bt) / Totalshares] + ηp,t+1εp,t+1, (10)

where ηp,t is alternatively distributed random variable, ηp,t = 1 with probability pp = 2 × 10−2 and
ηp,t = 0 otherwise, and εp,t is the noise (i.i.d. random variables from N(0, 4)) added in order to represent
other traders potentially present in the market, and β is some function of excess demand. Following [2],
β was set to

β(Bt −At) =

{
tanh(β1(Bt −At)), Bt ≥ At,

tanh(β2(Bt −At)), Bt < At.
(11)

The parameters β1 and β2 were set to 10−4 and 2× 10−4 respectively. It is clear that the price does not
change – except the possible noise – when there is no demand for risky asset or no supply of it which is
in accordance with the real market.

2.2 Forecasting strategies

Traders want to forecast future change of the price and future dividends. As was previously stated,
this work compares neural networks with more traditional models used for prediction. Traders therefore
use neural network, ARMA or another model as their forecasting strategy. This is the only thing that
differentiates one trader from another. Each trader uses the same forecasting strategy for both future
price (or log-return, i.e. change of logarithm of the price) prediction and future dividend prediction.

The first group of agents uses AR models as their forecasting strategy for a prediction of the log-
return and the dividend. Parameters of the AR models are estimated by conditional maximum likelihood
(see [4] for details). Traders of the second type forecast the same future values with the aid of ARMA
models estimated by conditional maximum likelihood again. Traders of the third and fourth type uses
a feed-forward neural network with 3 and 4 layers respectively to forecast the same quantities. The
Levenberg–Marquardt algorithm and backpropagation are used for searching for optimal parameters, see
Section 2.3 for details. The fifth group of traders utilizes the Elman recurrent networks for forecasting the
log-returns and dividends again. The Levenberg–Marquardt algorithm is used for searching for optimal
parameters. For all NN models, the activation function of hidden neurons is tangent hyperbolic and
the activation function of output neuron is linearity. For more information about feed-forward neural
networks and Elman’s networks see [5], [1], [9] or [3].

There are three more types of forecasting strategy. The first of them is strategy which employs an
average of last realized values to predict the future price itself and future dividend. The second is so-called
Naive forecasting strategy which can be viewed as special case of the previous. It simply predicts the
future value by the last known. This forecasting strategy can be viewed as the basic for comparison with
other more advanced strategies. Traders with the last strategy make random predictions of future price
changes and future dividends.

Although some tables presented in Subsection 3.2 contain also results for traders utilizing the average
and random forecasting strategy, these traders fulfill special roles in the artificial market. The purpose of
random traders is to bring liquidity in the market. Traders employing average serve as an antipole to all
the trend-chasers in the market, i.e. traders forecasting with AR or ARMA models or any kind of neural
network, so they essentially fulfill the role of fundamentalists. They should force the price to return back.
As these two types of traders should somehow stabilize the market (average) or should support trading
(random) the number of traders with these two strategies is bigger than the number of other traders.
Specifically, there is 280 random traders and 40 traders using averages, while each other group of traders
has 4 only traders. Some tables in Subsection 3.2 don’t contain results for the strategies fulfilling special
roles because the main goal of this work is to compare NNs and ARMA models. Moreover in some cases
it don’t make sense to present results for these strategies.
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2.3 Learning of traders

The learning is partially own invention and partially taken from [2]. A part of trader learning from [2] is
adopted and part is left out. Every trader knows his wealth as well as the wealth of all other agents in
this artificial market. After the given period of time k = 400, each trader counts the difference between
his/her present wealth and wealth at time t− k, i.e., Wi,t −Wi,t−k. This indicates how much money the
trader has earned or lost. Everyone consequently gets a rank Ri,t according his difference of wealth. The
quantity

ri,t =
Ri,t

N
(12)

is then the probability that agent i recounts parameters of his forecasting strategy due to pressure of
society. The smaller his rank the smaller the probability that he learns new parameters of his strategy
(because he is satisfied with the current parameters). Each trader can also recounts his strategy on the
basis of growth rate of his wealth over the previous period. Therefore, even if trader i does not recount
his strategy because of pressure of society, there is still chance that he will do it for a different reason.
Specifically, because he is not satisfied with himself. Let

χk
i,t =

Wi,t −Wi,t−k

|Wi,t−k|
(13)

be trader i’s growth rate of wealth over the previous period. It in fact measures how effective trader i’s
strategy was. Then

si,t =
1

1 + exp{χk
i,t}

(14)

is the probability that trader i will recount his strategy because of its low efficiency. If trader i recounts
parameters of his strategy at the end of the tth day, he will learn on the data of length m = 300 (common
to all traders).

Except aforementioned learning, the traders using the forecasting strategies based on feed-forward
neural networks can recount the parameters of their strategies each time after the new log-return and
the new dividend amount is known. In that time, they already know the correct log-return and divi-
dend they forecasted before so they can update the parameters of their forecasting strategies simply by
backpropagation with momentum.

3 Simulation

Fourteen simulations with the same setups were performed. Traders always learn at the beginning of the
simulation on simulated data of length 150. The dividend process was generated according to (2). For
price, its mean was set to 1000 and the log-returns were taken from GARCH(1, 1) process with Gaussian
innovations. Traders estimated parameters of their strategies on these simulated data. After this initial
learning the traders were given initial amount of money (800) and shares (0.15). The last values of
simulated dividend and price served as initial values to the market simulation. Traders were let to trade
for 200 time steps. After this period all agents recalculate (learn) the parameters of their forecasting
strategies, the realized price series (200 time steps) were discarded and the same initial amount of money
and shares were given to all of them. The same procedure was applied again, i.e. 200 time steps of
trading, recalculation of parameters, price series discarded and initial money and shares allocation. Then
the competition (described in this paper) having aforementioned 1170 time steps started. The previous
two procedures were performed in order that agents learn the parameters of their strategies on data arisen
from their trading.

3.1 Verifying stylized facts

To get more realistic results, the constructed market should have similar characteristics as the real
markets have. The characteristics of real markets (also called stylized facts) are for example heavy tail
distribution of returns and their volatility clustering or that prices follow random walk. As can be seen
from the numbers presented below, some stylized facts hold in the artificial market and some not. The
results of testing are presented in the Table 1. The first tested stylized fact (column adf) was that the price
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series have a unit root. This hypothesis was tested by augmented Dickey–Fuller test. The Kwiatkowski–
Phillips–Schmidt–Shin test (column kpss) was used to test the second stylized fact – the null about level
stationarity of log-returns. The hypothesis that the log-returns are uncorrelated in time – third stylized
fact (column B–P) – was tested by Box–Pierce test. The last stylized fact tested was that log-returns
have distribution with fat tails. It was tested whether the log-returns have Gaussian distribution and
also their kurtosis was calculated. The goal of this analysis was to show that the hypothesis about
Gaussian distribution of log-returns in the artificial market is rejected. The test used for this purpose
was Jarque–Bera test, the column J–B. The kurtosis indicates fat tails when it is higher than 3 (the
kurtosis of Gaussian distribution) which is the reason why it was calculated, column kurt. The last row
of the Table 1, named summary, contains proportion of null rejections on 5% confidence level for first
four columns. For the last column (kurt) it contains the proportion of excess kurtosis, i.e. the case when
the calculated kurtosis is higher then 3.

simulation no. adf kpss B–P J–B kurt

1 0.65 0.10 ∼ 0 ∼ 0 5.0

2 0.95 0.06 ∼ 0 ∼ 0 4.7

3 0.87 0.04 ∼ 0 ∼ 0 3.9

4 0.69 0.09 ∼ 0 ∼ 0 4.6

5 0.58 0.10 ∼ 0 ∼ 0 4.2

6 0.77 0.10 ∼ 0 ∼ 0 3.8

7 0.93 0.09 ∼ 0 ∼ 0 4.4

8 0.48 0.03 ∼ 0 ∼ 0 3.6

9 0.39 0.01 ∼ 0 ∼ 0 4.9

10 0.92 0.10 ∼ 0 ∼ 0 4.4

11 0.70 0.10 ∼ 0 ∼ 0 5.6

12 0.53 0.10 ∼ 0 ∼ 0 3.6

13 0.95 0.01 ∼ 0 ∼ 0 3.9

14 0.80 0.10 ∼ 0 ∼ 0 3.7

summary 0 % 28.6 % 100 % 100 % 100 %

Table 1: Results of stylized facts testing.

3.2 Comparing strategies

When comparing agents, the criterion of their success was the amount of money they earned. Specifically,
it was the ratio of last and initial wealth of the particular traders. The results of the 14 simulations are
presented in the Table 2 below. The very interesting phenomenon is that the traders utilizing Elman
networks won every simulation with only one exception (simulation no. 11) where the traders with ARMA
models as their forecasting strategy won. The best trader in all simulations was utilizing Elman networks.
So the 11th simulation was won by traders using ARMA models in average, however they all were beaten
by one of the traders forecasting with Elman networks. Except the presented results other more common
statistics were also studied, e.g. root mean square error and sign test of price predictions. Traders with
Elman networks as forecasting strategy had the lowest RMSE in most of simulations. Regarding the sign
test, the Elman netowrks were the best strategy in the direction estimation in ten out of the 14 cases.
The results are also interesting in the following feature. Although the FF1L and FF2L strategies had
much better results with respect to the sign test than AR models, the results of all these three strategies
are pretty the same for the ratio of final and initial wealth (see Table 2). This might seem quite strange,
but it is exactly the reason why the competition, i.e. the market simulation, was performed.

4 Conclusions

It was created an artificial market in order to compare forecasting strategies in it. The purpose of it was
to show a new way of comparing strategies. Except one stylized fact, the requirement of unpredictable
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sim. no. AR ARMA Avg Elman FF1L FF2L Naive Rnd

1 1.035 1.107 0.973 1.110 1.061 1.043 1.077 1.068

2 1.030 1.117 0.965 1.161 1.052 1.067 1.081 1.066

3 1.051 1.146 0.983 1.178 1.024 1.031 1.044 1.058

4 1.016 1.088 0.943 1.104 1.032 1.051 1.052 1.042

5 1.057 1.183 0.977 1.189 1.030 1.048 1.044 1.059

6 1.053 1.110 0.974 1.202 1.056 1.035 1.038 1.055

7 1.031 1.143 0.955 1.177 1.017 1.032 1.055 1.050

8 1.037 1.120 0.958 1.164 1.045 1.049 1.049 1.048

9 1.032 1.093 0.960 1.187 1.044 1.047 1.056 1.057

10 1.060 1.121 0.993 1.191 1.091 1.081 1.087 1.084

11 1.038 1.142 0.970 1.102 1.039 1.044 1.074 1.066

12 1.044 1.130 0.970 1.186 1.036 1.020 1.038 1.050

13 1.040 1.103 0.954 1.186 1.045 1.039 1.041 1.043

14 1.043 1.105 0.973 1.231 1.021 1.034 1.035 1.047

average 1.040 1.122 0.968 1.169 1.042 1.044 1.055 1.057

Table 2: The average ratio of final and initial wealth for particular groups of traders. AR = AR models,
ARMA = ARMA models, Avg = moving average, Elman = Elman networks, FF1L = feed-forward NN
with 1 hidden layer, FF2L = feed-forward NN with 2 hidden layers, Naive = naive strategy, Rnd =
random forecast

(or at least uncorrelated) log-returns, the artificial market seems to have similar characteristics as the
real one. The goal of this paper was to compare the NNs and ARMA models. The Elman networks
completely dominate in the presented contest ”the winner is the one who earns the most money” as well
as in the customary statistics (linked to the outputs of the market simulation) such as RMSE and sign
test.
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