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Abstract. Periodic properties of circulant interval matrices over (max,min)-
algebra (fuzzy matrices) are studied. Necessary and sufficient conditions for
possible and universal d-periodicity of circulant interval matrices are proved.
O(n) algorithm for verifying the possible d-periodicity and another O(n log n)
algorithm for verifying the universal d-periodicity as well are described.
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1 Introduction

To study matrix properties in (max,min)-algebra, where addition and multiplication are formally re-
placed by operations of maximum and minimum, is of great importance for applications in various areas.
Periodic behaviour of fuzzy matrices with corresponding polynomial algorithms were studied in [3] and
[6]. However, in practice we deal often with inexact input data. This leads to demand replace scalar
matrices by so-called interval matrices ([1]).

2 Preliminaries

The fuzzy algebra B is a triple (B,⊕,⊗), where (B,≤) is a bounded linearly ordered set with binary
operations maximum and minimum, denoted by ⊕, ⊗. The least element in B will be denoted by O, the
greatest one by I.

By N we denote the set of all natural numbers and by N0 the set N0 = N∪{0}. The greatest common
divisor of a set S ⊆ N is denoted by gcdS. For a given natural n ∈ N, we use the notation N for the set
of all smaller or equal positive natural numbers, i.e., N = {1, 2, . . . , n}.

For any n ∈ N, B(n, n) denotes the set of all square matrices of order n and B(n) the set of all
n-dimensional column vectors over B. Matrix operations over B are defined formally in the same manner
(with respect to ⊕, ⊗) as matrix operations over any other field. The rth power of a matrix A is

denoted by Ar, with elements a
(r)
ij . For A, C ∈ B(n, n) we write A ≤ C (A < C) if the inequality

aij ≤ cij (aij < cij) holds for all i, j ∈ N .

For a matrix A ∈ B(n, n) the symbol G(A) = (N,EG) stands for a complete, arc-weighted digraph
associated with A, i.e., the node set of G(A) is N , and the capacity of any arc (i, j) is aij . Let ∅ 6=
Ñ ⊂ N . G/Ñ stands for a subdigraph of digraph G(A) = (N,EG) with the node set Ñ and arc set
EG/Ñ = {(i, j) ∈ EG; i, j ∈ Ñ}. A path in the digraph G(A) = (N,EG) is a sequence of nodes

p = (i1, . . . , ik+1) such that (ij , ij+1) ∈ EG for j = 1, . . . , k. The number k is the length of the path p
and is denoted by `(p). If i1 = ik+1, then p is called a cycle.

By a strongly connected component K of G(A) = (N,EG) we mean a subdigraph K generated by a
non-empty subset K ⊆ N such that any two distinct nodes i, j ∈ K are contained in a common cycle
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and K is a maximal subset with this property. A strongly connected component K of a digraph is called
non-trivial, if there is a cycle of positive length in K. For any non-trivial strongly connected component
K is the period of K defined as

perK = gcd { `(c); c is a cycle in K, `(c) > 0 }.

If K is trivial, then perK = 1. By SCC?(G) we denote the set of all non-trivial strongly connected
components of G. The set of all strongly connected components of G is denoted by SCC(G).

Definition 1. Let A ∈ B(n, n). The matrix period, in notation perA, is defined as the minimal natural
number p for which there is R ∈ N such that

Ak+p = Ak for all k ≥ R.

In a (max,min)-algebra any element of any power of the matrix A is equal to some element of A.
Therefore, the power sequence of A contains finitely many different matrices with entries of A only. As
a consequence, a fuzzy matrix is always periodic in contrast to matrices in another extremal algebra,
namely, max-algebra.

For given h ∈ B, the threshold digraph G(A, h) is the digraph with the node set N and with the arc
set EG = {(i, j); i, j ∈ N, aij ≥ h}.

The following lemma describes the relation between matrices and corresponding threshold digraphs.

Lemma 1. [4] Let A, C ∈ B(n, n). Let h, h1, h2 ∈ B.

(i) If A ≤ C then G(A, h) ⊆ G(C, h),

(ii) if h1 < h2 then G(A, h2) ⊆ G(A, h1).

Following theorems proved in [3] are useful for study periodic properties of interval matrices.

Theorem 1. [3] Let A ∈ B(n, n), d ∈ N. Then the following assertions are equivalent

i) perA|d,

ii) (∀h ∈ B)(∀K ∈ SCC?(G(A, h))) perK| d.

Theorem 2. [3] Let A ∈ B(n, n). Then

perA = lcm { perK;K ∈ SCC?(A)}

3 Periodicity of interval circulant matrices

In this section we present a necessary and sufficient condition for an interval circulant matrix to be possibly
d-periodic and a necessary and sufficient condition for an interval circulant matrix to be universally d-
periodic as well. In addition we describe an O(n) algorithm for verifying the possible d-periodicity and
another O(n log n) algorithm for verifying the universal d-periodicity of an interval circulant matrix.

Definition 2. A matrix A ∈ B(n, n) is called circulant, if it has the form

A =


a1 a2 a3 . . . an−1 an

an a1 a2 . . . an−2 an−1
...

...
... . . .

...
...

a2 a3 a4 . . . an a1

 .

We denote a circulant matrix A by abbreviation A(a1, . . . , an). The set of all entries of A with the
same index is called a stripe, the entries ak form the kth stripe. In the associated digraph G(A) each
stripe k defines a set of arcs of the form (i, i + k − 1) for i = 1, 2, . . . , n; obviously all the numbers here
are considered modulo n. Denote by E(k) the set of all arcs (i, j) in G(A) corresponding to the kth strip.
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We shall say that the span of an arc in E(k) is sk = k − 1. As was observed already in [2], the arcs of
E(k) fall into a set of disjoint cycles, all with the same length equal to 1 for the first stripe and equal to

`(ck) =
n

gcd(n, sk)
(1)

for k 6= 1. Denote by C(k) the set of all these cycles.

As a consequence results proved in lemmas below can be obtained, which allows to derive the formula
for computing the period of a circulant matrix in Theorem 3.

Lemma 2. [4] Let A(a1, . . . , an) be a circulant matrix. For each h ∈ {ai; i ∈ N} the threshold digraph
G(A, h) is either strongly connected or consists of m strongly connected components isomorphic with K1,
where K1 ∈ SCC?(G(A, h)) containing node 1 and m | n.

Lemma 3. Let G′ ⊆ G, K ∈ SCC?(G) and K′∈ SCC?(G′/NK). Then perK| perK′.

Proof. Since { `(c); c is a cycle from K′ } ⊆ { `(c̃); c̃ is a cycle from K} we obtain

perK = gcd{ `(c); c is a cycle from K}| gcd{ `(c̃); c̃ is a cycle from K′ } = perK′.

Theorem 3. Let A(a1, . . . , an) be a circulant matrix. Then for the period of matrix A holds

perA = perK1

where K1 ∈ SCC?(G(A,max
i∈N

ai)) containing node 1.

Proof. According to Lemma 2, Lemma 3 and G(A,max
i∈N

ai) ⊆ G(A, h) for each h ∈ {ak; k ∈ N} we get

perK | perK1 for each K ∈ SCC?(A). Since K1 ∈ SCC?(A), we have

perA = lcm {perK;K ∈ SCC?(A)} = perK1.

In this paper we shall deal with matrices with interval elements. Similarly to [1], [4], [5] we define an
interval matrix A as follows.

Definition 3. Let A,A ∈ B(n, n), A ≤ A. An interval matrix A with bounds A and A is defined as
follows

A = [A,A] =
{
A ∈ B(n, n); A ≤ A ≤ A

}
.

Definition 4. For an interval matrix A of the form

A =


a1 a2 a3 . . . an−1 an

an a1 a2 . . . an−2 an−1
...

...
...

...
...

a2 a3 a4 . . . an a1

 ,

by abbreviation A(a1, . . . ,an), where ai = [ai, ai], ai ≤ ai for each i ∈ N we define the interval
circulant matrix AC(a1, . . . ,an) as the set of all circulant matrices from A, in notation AC = {A ∈
A;A is circulant}.

Notice that there exist matrices A ∈ A which are not circulant. Since A, A ∈ AC , the set AC is
non-empty.

Definition 5. Let d be a positive natural number. An interval circulant matrix AC(a1, . . . ,an) is called

• possibly d-periodic if there exists a matrix A ∈ AC such that perA|d,

• universally d-periodic if for each matrix A ∈ AC perA|d holds.
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3.1 Possible d-periodicity of interval circulant matrices

Let us denote S̃ = {ai; max
k∈N

ak ≤ ai}. It is clear that max
k∈N

ak ∈ S̃, so S̃ 6= ∅. Let us define the number

h̃ = min S̃ and the vector ã = (ãi) ∈ B(n) as follows:

ãi = min{h̃, ai} (2)

for each i ∈ N . For a given vector a ∈ a let us denote h(a) = max
i∈N

ai and J(a) = {i ∈ N ; ai = h(a)}. It is

easy to see that h(ã) = h̃ and J(ã) = {i ∈ N ; ai ≥ h̃}.

The following lemma creates the base for the proof of the necessary and sufficient condition formulated
in Theorem 4.

Lemma 4. Let a ∈ a be arbitrary and ã be given by (2). Then J(a) ⊆ J(ã).

Proof. If J(ã) = N , then J(a) ⊆ J(ã) trivially holds. If J(ã) 6= N then it follows from (2) that for
each i /∈ J(ã) the inequality ai < h̃ hods true. Consequently max

i/∈J(ã)
ai /∈ S̃, i.e., max

k∈N
ak > max

i/∈J(ã)
ai. Let

a ∈ a, r ∈ J(a) be arbitrary. We get

ar = max
k∈N

ak ≥ max
k∈N

ak > max
i/∈J(ã)

ai ≥ max
i/∈J(ã)

ai

which implies r ∈ J(ã). Consequently J(a) ⊆ J(ã) for each a ∈ a.

The above constructed vector ã = (ã1, ã2, . . . , ãn) defines a matrix Ã(ã1, ã2, . . . , ãn) ∈ AC , which
plays a crucial role in checking the possible d-periodicity of the interval circulant matrix AC .

Theorem 4. An interval circulant matrix AC(a1, . . . ,an) is possibly d-periodic if and only if per Ã | d.

Proof. If Ã is not d-periodic then per K̃1 - d where K̃1 ∈ SCC?(G(Ã, h̃)) containing node 1. Let
A(a1, a2, . . . , an) be arbitrary. It follows from Lemma 4 that G(A, h(a)) ⊆ G(Ã, h̃). Then per K̃1 | perK1

where K1 ∈ SCC?(G(A, h(a))) which implies perK1 - d. By Theorem 3 the matrix A is not d-periodic.
This means that no matrix A ∈ AC is d-periodic. Thus AC is not possibly d-periodic.

The converse implication is trivial.

The theorem bellow was proved in [3]. We will use the formula to compute the period of a circulant
matrix in our algorithms. Denote I(A) = {i; ai+1 = max

k∈N
ak} ∪ {n}.

Theorem 5. [3] Let A(a0, . . . , an−1) be a circulant matrix, let I(A) = {n, i0, i1, . . . , ik−1}, |I(A)| = k+1.
Then

perA = gcd

(
n

gcd(n, i0)
,

i0 − i1
gcd(i0, i1)

,
i1 − i2

gcd(i1, i2)
, . . . ,

ik−1 − ik−2
gcd(ik−2, ik−1)

)
. (3)

Now, we can describe an algorithm based on Theorem 4 for checking the possible d-periodicity of an
interval circulant matrix AC .

Algorithm Possible d-periodicity of circulant matrix

Input. A = [A,A] and d.
Output. ’yes’ in variable pdp if AC is possibly d-periodic; ’no’ in pdp otherwise.

begin

(i) Compute S̃ = {ai; max
k∈N

ak ≤ ai};

(ii) Compute h̃ = min S̃;

(iii) Compute the matrix Ã by ãi = min{h̃, ai};
(iv) Compute the period per Ã (by (3));

(v) If per Ã | d then pdp :=’yes’; else pdp :=’no’;

end
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Theorem 6. Let AC(a1, . . . ,an) be an interval circulant matrix. The Algorithm Possible d-periodicity
of circulant matrix correctly decides in O(n) time whether the interval circulant matrix AC is possibly
d-periodic.

Proof. It was proved in [3] that the period of a circulant matrix can be computed in O(n) time. Since
none of operations in the Algorithm requires more time the total time of computation is O(n).

Let us consider the following interval matrix to illustrate the above Algorithm.

Example 1. Let d = 4. Let A([0, 2], [2, 5], [3, 3], 3, 4], [1, 3], [5, 6]) be an interval matrix.

S̃ = {ai; max
k∈N

ak ≤ ai} = {5, 6} and h̃ = min S̃ = 5. Now, the matrix Ã can be found by ãi =

min{h̃, ai}. Hence the resulting circulant matrix is Ã(2, 5, 3, 4, 3, 5). I(A) = {i; ai = max
k∈N

ak} ∪ {n} =

{1, 5, 6} and now, the period per Ã can be computed by (3):

per Ã = gcd

(
6

gcd(6, 1)
,

−4

gcd(1, 5)

)
= gcd (6,−4) = 2.

Since per Ã | d the interval circulant matrix AC is possibly d-periodic.

3.2 Universal d-periodicity of interval circulant matrices

The necessary and sufficient condition for universal d-periodicity of an interval circulant matrix is formu-
lated in the following theorem.

Theorem 7. An interval circulant matrix AC(a1, . . . ,an) is universally d-periodic if and only if perA | d
and (∀k)(ak > max

i∈N
ai ⇒ `(c1k) | d), where c1k ∈ C(k) containing node 1.

Proof. Suppose that perA - d or there exists k ∈ N such that ak > max
i∈N

ai and `(c1k) - d. We shall prove

that there exists A ∈ AC such that perA - d.

Since A ∈ AC , in the first case there exists A ∈ A such that perA - d.

In the second case we construct the matrix Ã = (ãi) as follows:

ãi =

{
ai, if i = k,

ai, otherwise,

where k ∈ N is such that ak > max
i∈N

ai and `(c1k) - d. Since K1 ∈ SCC?(G(Ã, ak)) containing node 1,

consists of only cycle c1k we have perK1 = `(c1k) - d. Thus per Ã - d by Theorem 3.

For the converse implication suppose that there exists A ∈ AC such that perA - d and perA | d. By
Theorem 3 we get perK1 - d, where K1 ∈ SCC?(G(A,max

i∈N
ai)). As perA | d, we get max

i∈N
ai > max

i∈N
ai.

Let k ∈ N be such that ak = max
i∈N

ai. Since A is circulant, c1k ∈ SCC?(G(A,max
i∈N

ai)). Thus there exists

k ∈ N such that ak ≥ ak > max
i∈N

ai and `(ck) - d.

Now, we can describe an algorithm based on Theorem 7 for checking the universal d-periodicity of an
interval circulant matrix AC .

Algorithm Universal d-periodicity of circulant matrix

Input. A = [A,A] and d.
Output. ’yes’ in variable udp if AC is universally d-periodic; ’no’ in udp otherwise.

begin

(i) k := 0;
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(ii) Compute perA (by (3));

(iii) If perA - d then udp :=’no’; go to end;

(iv) Compute a = max
i∈N

ai;

(v) k := k + 1;

(vi) If k > n then udp :=’yes’; go to end;

(vii) If ak ≤ a go to (v);

(viii) Compute l(ck) (by (1));

(ix) If l(ck) - d then udp :=’no’; go to end; else go to (v);

end

Theorem 8. Let AC(a1, . . . ,an) be an interval circulant matrix. The Algorithm Universal d-periodicity
of circulant matrix correctly decides in O(n log n) time whether the interval circulant matrix AC is
universally d-periodic.

Proof. The computational complexity of the period of a circulant matrix by (3) is O(n) ([3]). Therefore
the total time in steps (i)-(iv) is O(n). To evaluate the length of a cycle by (1) requires O(log n) operations
and this will be repeated n-times. Hence the complexity of the complete algorithm is O(n log n).

Let us consider the following interval matrix to illustrate the above Algorithm.

Example 2. Let d = 4. Let A([0, 4], [1, 3], [4, 6], [0, 2], [2, 3], [3, 5], [4, 4], [2, 4]) be an interval matrix.

For the circulant matrix A = (0, 1, 4, 0, 2, 3, 4, 2) we find by (3) the period perA = 2. Since perA | d
we proceed to the next step and compute a = max

i∈N
ai = 4. There are only two indices satisfying ak > a

for which the computation of cycle length l(ck) is needed. For k = 3 is l(ck) = 4 hence l(ck) | d, while
for k = 6 is l(ck) = 8 and l(ck) - d. Thus there is a matrix A ∈ AC with perA equal to 8. Consequently
the considered interval circulant matrix AC is not universally d-periodic, for d = 4.

A slightly modified interval matrix (a5 and a6 replace each other) of the matrix in previous example
results in an universally d-periodic interval circulant matrix.

Example 3. Let d = 4. Let A([0, 4], [1, 3], [4, 6], [0, 2], [3, 5], [2, 3], [4, 4], [2, 4]) be an interval matrix.

Instead of index k = 6 we shall consider index k = 5 for which the inequality ak > a is satisfied. Since
l(ck) = 2 divides d = 4, the given interval circulant matrix is universally d-periodic, for d = 4.

4 Conclusion

Polynomial algorithm for checking the possible d-periodicity with essentially improved computational
complexity compared with interval matrices in general ([5]) was presented. Moreover, another polynomial
algorithm for verifying the universal d-periodicity of interval fuzzy matrices was described while the
computational complexity of corresponding procedure can be exponentially large in general.
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