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Efficient algorithm for checking periodicity
of interval circulant fuzzy matrices
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Abstract. Periodic properties of circulant interval matrices over (max, min)-
algebra (fuzzy matrices) are studied. Necessary and sufficient conditions for
possible and universal d-periodicity of circulant interval matrices are proved.
O(n) algorithm for verifying the possible d-periodicity and another O(nlogn)
algorithm for verifying the universal d-periodicity as well are described.
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1 Introduction

To study matrix properties in (max, min)-algebra, where addition and multiplication are formally re-
placed by operations of maximum and minimum, is of great importance for applications in various areas.
Periodic behaviour of fuzzy matrices with corresponding polynomial algorithms were studied in [3] and
[6]. However, in practice we deal often with inexact input data. This leads to demand replace scalar
matrices by so-called interval matrices ([1]).

2 Preliminaries

The fuzzy algebra B is a triple (B, ®,®), where (B, <) is a bounded linearly ordered set with binary
operations mazimum and minimum, denoted by @, ®. The least element in B will be denoted by O, the
greatest one by I.

By N we denote the set of all natural numbers and by Ny the set Ny = NU{0}. The greatest common
divisor of a set S C N is denoted by ged S. For a given natural n € N, we use the notation N for the set
of all smaller or equal positive natural numbers, i.e., N ={1, 2, ..., n}.

For any n € N, B(n,n) denotes the set of all square matrices of order n and B(n) the set of all
n-dimensional column vectors over 3. Matrix operations over B are defined formally in the same manner
(with respect to @, ®) as matrix operations over any other field. The rth power of a matrix A is

denoted by A", with elements a'”. For A, C € B(n,n) we write A < C (A < C) if the inequality

a;; < ¢ij (ai; < ¢ij) holds for all 4, j € N.

For a matrix A € B(n,n) the symbol G(A) = (N, E¢) stands for a complete, arc-weighted digraph
associated with A, i.e., the node set of G(A) is N, and the capacity of any arc (¢,7) is a;;. Let () #
N C N. G/N stands for a subdigraph of digraph G(A) = (N, Eg) with the node set N and arc set
Eg,x = {(i,j) € Eg; i,j € N}. A path in the digraph G(A) = (N, E¢) is a sequence of nodes
p = (i1, ..., tg+1) such that (i;,ij41) € Eg for j =1, ..., k. The number k is the length of the path p
and is denoted by £(p). If iy = ix41, then p is called a cycle.

By a strongly connected component K of G(A) = (N, Eg) we mean a subdigraph K generated by a
non-empty subset K C N such that any two distinct nodes i,7 € K are contained in a common cycle
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and K is a maximal subset with this property. A strongly connected component K of a digraph is called
non-trivial, if there is a cycle of positive length in K. For any non-trivial strongly connected component
K is the period of KC defined as

per K = ged {4(c); cis acycle in K, £(c) > 0}.

If K is trivial, then per £ = 1. By SCC*(G) we denote the set of all non-trivial strongly connected
components of G. The set of all strongly connected components of G is denoted by SCC(G).

Definition 1. Let A € B(n,n). The matriz period, in notation per A, is defined as the minimal natural
number p for which there is R € N such that

ARt = AF for all k> R.

In a (max, min)-algebra any element of any power of the matrix A is equal to some element of A.
Therefore, the power sequence of A contains finitely many different matrices with entries of A only. As
a consequence, a fuzzy matrix is always periodic in contrast to matrices in another extremal algebra,
namely, max-algebra.

For given h € B, the threshold digraph G(A,h) is the digraph with the node set N and with the arc
set Eq ={(4,7); i,j € N, a;; > h}.

The following lemma describes the relation between matrices and corresponding threshold digraphs.

Lemma 1. [4] Let A, C € B(n,n). Let h, hy, hs € B.

(i) If A < C then G(A, h) € G(C, h),
(ii) if hy < ho then G(A, ha) € G(A, hy).

Following theorems proved in [3] are useful for study periodic properties of interval matrices.

Theorem 1. [3] Let A € B(n,n), d € N. Then the following assertions are equivalent

i) per A|d,
ii) (Vh € B)(VK € SCC*(G(A, h))) per K| d.
Theorem 2. [3] Let A € B(n,n). Then

per A = lem { per K; K € SCC*(A)}

3 Periodicity of interval circulant matrices

In this section we present a necessary and sufficient condition for an interval circulant matrix to be possibly
d-periodic and a necessary and sufficient condition for an interval circulant matrix to be universally d-
periodic as well. In addition we describe an O(n) algorithm for verifying the possible d-periodicity and
another O(nlogn) algorithm for verifying the universal d-periodicity of an interval circulant matrix.

Definition 2. A matrix A € B(n,n) is called circulant, if it has the form

a; az as ... QAp—1 Ay

an, a1 agz ... Ap—2 QAp—1
A ==

az as Qa4 ... (07%% ap

We denote a circulant matrix A by abbreviation A(ay,...,a,). The set of all entries of A with the
same index is called a stripe, the entries a; form the kth stripe. In the associated digraph G(A) each
stripe k defines a set of arcs of the form (i,i + k — 1) for ¢ = 1,2,...,n; obviously all the numbers here
are considered modulo n. Denote by E(*) the set of all arcs (i, j) in G(A) corresponding to the kth strip.
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We shall say that the span of an arc in E*®) is s, = k — 1. As was observed already in [2], the arcs of
E®) fall into a set of disjoint cycles, all with the same length equal to 1 for the first stripe and equal to

(1)

n

fler) = ged(n, sg)

for k # 1. Denote by C®) the set of all these cycles.

As a consequence results proved in lemmas below can be obtained, which allows to derive the formula
for computing the period of a circulant matrix in Theorem 3.

Lemma 2. [4] Let A(aq,...,a,) be a circulant matrix. For each h € {a;;7 € N} the threshold digraph
G(A, h) is either strongly connected or consists of m strongly connected components isomorphic with X1,
where K! € SCC*(G(A, h)) containing node 1 and m | n.

Lemma 3. Let G’ C G, K € SCC*(G) and K’ € SCC*(G'/Nx). Then per K| per K'.

Proof. Since {£(c); cis a cycle from K’} C {{(¢); ¢ is a cycle from K} we obtain

per K = ged{ {(c); cis a cycle from K }| ged{ £(¢); ¢ is a cycle from K’} = per K'.

Theorem 3. Let A(as,...,a,) be a circulant matriz. Then for the period of matriz A holds
per A = per K!

where K € SCC*(G(A,I_IéaA)lc a;)) containing node 1.

Proof. According to Lemma 2, Lemma 3 and G(A,mz}\)[( a;) C G(A,h) for each h € {ar; k € N} we get
1€
per K | per K! for each K € SCC*(A). Since K € SCC*(A), we have
per A = lem { per K; K € SCC*(A)} = per K'.
O
In this paper we shall deal with matrices with interval elements. Similarly to [1], [4], [5] we define an

interval matrix A as follows.

Definition 3. Let A, A € B(n,n), A < A. An interval matriz A with bounds A and A is defined as
follows B B
A=[AA={AcBmn); A<A<A}.

Definition 4. For an interval matrix A of the form

a a a3 ... Qp_] an
a, a G ... Gp—2 Qp—]
A= :
as as a4 ... an a)
by abbreviation A(ay,...,a,), where a; = [a;,a;], a, < @; for each i € N we define the interval
circulant matriz A (ay, ..., a,) as the set of all circulant matrices from A, in notation A® = {A €

A; A is circulant}.

Notice that there exist matrices A € A which are not circulant. Since 4, A € A, the set AC is
non-empty.

Definition 5. Let d be a positive natural number. An interval circulant matrix A%(ay, ..., a,) is called

e possibly d-periodic if there exists a matrix A € A® such that per A|d,

e universally d-periodic if for each matrix A € A per A|d holds.
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3.1 Possible d-periodicity of interval circulant matrices

Let us denote S = {a;; glaﬁgk < @;}. Tt is clear that Iknalsfﬁk S 5, so S # (). Let us define the number
€ €

h =min S and the vector @ = (@;) € B(n) as follows:

a; = min{h,a;} (2)
for each i € N. For a given vector a € a let us denote h(* = max a; and J(a) = {i € N;a; = h@}. Tt is
easy to see that h(®) = h and J(a) = {i € N;a; > h}.

The following lemma creates the base for the proof of the necessary and sufficient condition formulated
in Theorem 4.

Lemma 4. Let a € a be arbitrary and a be given by (2). Then J(a) C J(a).

Proof. 1f J(a) = N, then J(a) C J(a) trivially holds. If J(@) # N then it follows from (2) that for

h ¢ ¢ J(a) the i lity @; < h hods true. C t] a; ¢S, ie., > a;. Let
each i ¢ J(a) the inequality a; ods true. Consequently ig}aé) a; ¢ 9, ie max iglﬁ%() a;. Le

a € a, r € J(a) be arbitrary. We get

ar = maxar > maxa, > max a; > max a;

kEN kEN ¢ J(a) igJ(a)
which implies r € J(a). Consequently J(a) C J(a) for each a € a. O
The above constructed vector a = (a1, as,...,a,) defines a matrix A(dl,dg7 ... @p) € AY, which

plays a crucial role in checking the possible d-periodicity of the interval circulant matrix A°.

Theorem 4. An interval circulant matriz A€ (ay, ..., a,) is possibly d-periodic if and only if per A | d.
Proof. If A is not d-periodic then per K!' t d where K' € SCC*(G(A,B))~ containing node 1. Let
Alay,as, ..., a,) be arbitrary. Tt follows from Lemma 4 that G(A, h(*)) C G(A, h). Then per K' | per K

where K € SCC*(G(A, h())) which implies per K { d. By Theorem 3 the matrix A is not d-periodic.
This means that no matrix A € A% is d-periodic. Thus A is not possibly d-periodic.

The converse implication is trivial. O

The theorem bellow was proved in [3]. We will use the formula to compute the period of a circulant
matrix in our algorithms. Denote I(A) = {i;a,11 = max ap} U{n}.
€

Theorem 5. [3] Let A(ao, .. .,an—1) be a circulant matriz, let I(A) = {n,io,%1,...,9k—1}, [[(A)] = k+1.

Then . . . . . .
n 0 — 11 11 — 19 Up—1 — k-2
er A =gcd —, —, ——— s - - . 3
P & (ng(nﬂo) ged(do, 1) ged(iy, i) ng(Zkz,le) ®)

Now, we can describe an algorithm based on Theorem 4 for checking the possible d-periodicity of an
interval circulant matrix A€,

Algorithm Possible d-periodicity of circulant matrix

Input. A = [A, A] and d.

Output. ’yes’ in variable pdp if A is possibly d-periodic; 'no’ in pdp otherwise.
begin

i) C te S = {a; <a;};
(i) Compute {a;; max g, < a;};

(ii) Compute h = min S;

) Compute the matrix A by a; = min{h,a@;};

) Compute the period per A (by (3));

(v) If per A | d then pdp :=’yes’; else pdp :="no’;

(iii

(iv
end
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Theorem 6. Let A®(ay, ..., a,) be an interval circulant matriz. The Algorithm Possible d-periodicity
of circulant matrix correctly decides in O(n) time whether the interval circulant matriz A€ is possibly
d-periodic.

Proof. Tt was proved in [3] that the period of a circulant matrix can be computed in O(n) time. Since
none of operations in the Algorithm requires more time the total time of computation is O(n). O
Let us consider the following interval matrix to illustrate the above Algorithm.

Example 1. Let d = 4. Let A([0,2],[2,5],[3,3],3,4],[1,3],[5,6]) be an interval matrix.

S = {a; max ay, < @} = {5,6} and h = min § = 5. Now, the matrix A can be found by a; =
€
min{h,@;}. Hence the resulting circulant matrix is A(2,5,3,4,3,5). I(A) = {i;a; = ?%{ak} U{n} =
€
{1,5,6} and now, the period per A can be computed by (3):

6 —4
ged(6,1)7 ged(1,5)

per A = ged ( > = ged (6, —4) = 2.

Since per A | d the interval circulant matrix A€ is possibly d-periodic.

3.2 Universal d-periodicity of interval circulant matrices

The necessary and sufficient condition for universal d-periodicity of an interval circulant matrix is formu-
lated in the following theorem.

Theorem 7. An interval circulant matriz A€ (ay, ..., a,) is universally d-periodic if and only if per A | d
and (Vk)(ay, > maxa; = U(ct) | d), where ct. € C%) containing node 1.
1€

Proof. Suppose that per A 1 d or there exists k € N such that @y > max g, and £(c},) t d. We shall prove
1€
that there exists A € A such that per A { d.
Since A € A%, in the first case there exists A € A such that per A4 { d.

In the second case we construct the matrix A = (&;) as follows:

i {a,», if i=k,
a; =

a;, otherwise,
where k € N is such that a; > max g; and £(c}) f d. Since K' € SCC*(G(A,dy)) containing node 1,
consists of only cycle ¢} we have per K' = ¢(c},) { d. Thus per A {d by Theorem 3.

For the converse implication suppose that there exists A € A¢ such that per A {d and per A | d. By
Theorem 3 we get per K1 { d, where K! € SCC*(G(A,m%(ai)). As per A | d, we get maxa; > Waxa;.
1€ 1€ [

eEN
Let £ € N be such that a; = X ;. Since A is circulant, ¢ € SCC*(G(A, max a;)). Thus there exists
7 K3
k € N such that @, > ap > max g, and f(cg) 1 d. O
1€

Now, we can describe an algorithm based on Theorem 7 for checking the universal d-periodicity of an
interval circulant matrix A¢.

Algorithm Universal d-periodicity of circulant matrix

Input. A = [A, A] and d.
Output. ’yes’ in variable udp if AC is universally d-periodic; mo’ in udp otherwise.

begin
(i) k:=0;
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Compute per A (by (3));

If per A 1 d then udp :='no’; go to end;

Compute ¢ = maxa,;
ieN

)
)
) a;;
v) kE:=k+1,;
)
)
)
)

(vi) If £ > n then udp :="yes’; go to end;
(vii) If @, < a go to (v);
(viii) Compute I(cx) (by (1));
(ix) If i(ck) 1 d then udp :="no’; go to end; else go to (v);
end
Theorem 8. Let A®(ay,...,a,) be an interval circulant matriz. The Algorithm Universal d-periodicity

of circulant matrix correctly decides in O(nlogn) time whether the interval circulant matriz AC is
universally d-periodic.

Proof. The computational complexity of the period of a circulant matrix by (3) is O(n) ([3]). Therefore
the total time in steps (i)-(iv) is O(n). To evaluate the length of a cycle by (1) requires O(log n) operations
and this will be repeated n-times. Hence the complexity of the complete algorithm is O(nlogn). O

Let us consider the following interval matrix to illustrate the above Algorithm.

Example 2. Let d = 4. Let A([0,4],[1, 3], [4,6],[0,2], 2, 3],[3,5],[4, 4], [2,4]) be an interval matrix.

For the circulant matrix A = (0, 1,4,0,2,3,4,2) we find by (3) the period per A = 2. Since per A | d

we proceed to the next step and compute a = maxa; = 4. There are only two indices satisfying ay > a
1€

for which the computation of cycle length I(cy) is needed. For k = 3 is l(¢x) = 4 hence I(cy) | d, while

for k =6 is I(cy) = 8 and [(cx) { d. Thus there is a matrix A € A¢ with per A equal to 8. Consequently

the considered interval circulant matrix A€ is not universally d-periodic, for d = 4.

A slightly modified interval matrix (a5 and ag replace each other) of the matrix in previous example
results in an universally d-periodic interval circulant matrix.

Example 3. Let d = 4. Let A([0,4],[1,3],[4,6],[0,2], [3,5],[2,3],[4,4], [2,4]) be an interval matrix.

Instead of index & = 6 we shall consider index k& = 5 for which the inequality a; > a is satisfied. Since
l(ck) = 2 divides d = 4, the given interval circulant matrix is universally d-periodic, for d = 4.

4 Conclusion

Polynomial algorithm for checking the possible d-periodicity with essentially improved computational
complexity compared with interval matrices in general ([5]) was presented. Moreover, another polynomial
algorithm for verifying the universal d-periodicity of interval fuzzy matrices was described while the
computational complexity of corresponding procedure can be exponentially large in general.
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