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Abstract. The skip transport consists in transport of skips (big containers,
trailers) from initial location to destination location using vehicles (tractors).
Capacity of vehicles is limited, usually the capacity of the vehicles is one or
two containers. The problem is defined on the graph, nodes are initial and
destination locations, total transport cost is minimized. It is supposed that
depot is given, all vehicles start and finish in the depot. There are many
papers which pay attention to skip delivery problem (SDP). It was shown
that the problem SDP can be solved as b-matching problem for case of vehicle
capacity two, and the case of capacity one or two. Unlike literature results the
skip pickup and delivery problem with vehicle circulation is studied (SPDPC).
Depots of vehicles are not given, but for each vehicle the cyclical path in the
graph should be found and depot the path can be arbitrary node on this path.
All cyclical paths create a circulation of the multigraph, where each arc can
be multiplied. The total transport costs have to be minimized. The problem
SPDPC is a special case of the pickup and delivery problem with transfers
and split demand, but the transport demand, the capacity of containers and
a solution of the problem are integer. A mathematical model is formulated
for the case of distance matrix with triangular inequality and the capacity of
vehicles one. The matrix of the model is totally unimodular then the problem
is polynomially solved. A method for the the circulation of vehicles is proposed.
It is demonstrated on a numerical example.
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1 Introduction - skip delivery problem

There are many papers that pay attention to skip delivery problem. In [1] the transport problem of skips
is studied, in which skips are transported by vehicles with capacity one or two from depot to customers.
There is a set of customers with the skip demand. Each customer is the node in the graph G = {V,E},
V is a set of nodes, E a set of edges, node 1 is depot. Demand of node i is denoted by positive integer bi.
The cost of travel from node i to node j is cij , it is supposed that the triangular inequality is satisfied and
the matrix C is symmetrical. Number of vehicles in the depot is unlimited, the capacity Q of vehicles is
fixed and positive integer and the depot of all vehicles is the node 1. All skips are available in the depot
and from the depot are delivered to the nodes according the node demand bi.

1.1 Skip delivery problem [1], case Q=2

In the case Q=2 there are only two possible round trips:
a) from the depot 1 to the node i and the node j and return to the node 1, this trip we denote eij ,
b) from the depot 1 to the node i and return to the depot, the trip is eii.

Now we define an artificial graph problem: minimum weight b-matching problem as follows. The
graph G′ = {V ′, E′}, where V ′ = V − {1}. The set of edges E′ contains all round trips eij and eii,
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where trip eij is edge of the graph G′ and eii the loop of the graph G′. The weight of the edge eij is
c′ij = c1i + cij + cj1, and the weight of the loop eii is cii = c1i + ci1. SDP problem with Q=2 can be
formulated as minimal weighted b-matching problem of the graph G′. The mathematical formulation of
the b-matching problem is as follows: Let us have integer variables xij , where (i, j) is edge or loop of the
graph G′. The value xij for i ̸= j is a number of trips of the type a) and xii a number of trips of the type
b). Mathematical model of the minimal weighted b-matching problem is:

z =
∑

(i,j)∈E′

c′ijxij → min (1)

∑
(i,j)∈E′,i̸=j

xi,j +
∑
i∈V ′

2xii ≥ bi, i ∈ V ′ (2)

xi,j , integer, (i, j) ∈ E′ (3)

The problem is reducible, i.e. there is an optimal solution of the instance in which each node is
served by as many full load depot-node trips as possible. Reducible instance can be transformed into an
instance of the generalized minimum cost matching problem, because demand of nodes is at least only
one container.

1.2 Skip delivery problem [1], case Q=1 or 2

Similar results hold for the case with capacity of vehicles is one or two. At first the cost of transfer thru
the edge (i, j) must differ for vehicle with capacity one or capacity two. The cost of travel from node
i to node j is c′ij = k1cij if the capacity of the vehicle is one, and c′ij = k2cij if the capacity is two,
where cij is distance from node i to node j. If k2/k1 ≤ 1 we will use only vehicle with capacity two, in
case k2/k1 ≥ 2 all used vehicles are with capacity one in the optimal solution. In the case Q=1 or 2 we
construct the undirected complete graph G′ = {V,E′} as an instance of the minimum weight b-matching
problem in the following way: c′ij = k2(c1i + cij + cj1), i ̸= j, i, j ∈ V − {1} and xij gives the number of
trips 1− i− j − 1 with a vehicle with capacity two, c′1i = 2k1c1i for i ∈ V −{1} and x1i is the number of
trips 1− i− 1 and vehicle capacity one, c′ii = 2k2c1i for i ∈ V − {1} and xii is number of trips 1− i− 1
and vehicle capacity two.

Example. Given graph with 4 nodes V = 1, 2, 3, 4, node 1 is depot. Skip demand is b = (0, 3, 5, 4), ,

cost matrix is C =


0 15 25 31

15 0 19 27

25 19 0 29

31 27 29 0

 .

The mathematical model of the case Q = 2 is:

z = 30x22 + 59x23 + 73x24 + 50x33 + 85x34 + 62x44 → min

2x22 + x23 + x24 ≥ 3

x23 + 2x33 + x34 ≥ 5

x24 + x34 + 2x44 ≥ 4

xi,j , integer, i, j = 2, 3, 4.

The optimal solution is x22 = 1, x23 = 1, x33 = 2 with z = 313.

The mathematical model of the case Q = 1, 2 and k1 = 4/5, k2 = 5/4 is:

z = 24x12 + 40x13 + 49x14 + 30x22 + 59x23 + 73x24 + 50x33 + 85x34 + 62x44 → min

x12 + 2x22 + x23 + x24 ≥ 3

x13 + x23 + 2x33 + x34 ≥ 5

x14 + x24 + x34 + 2x44 ≥ 4
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xi,j , integer, i, j = 1, 2, 3, 4.

The optimal solution is x14 = 4, x22 = 1, x23 = 1, x33 = 2 with z = 285.

Under assumption of symmetrical cost matrix and holding triangular inequality the problem with
capacity vehicles one or two is reducible.

The b-matching problem can be solved in polynomial time (see [1][2]) because the polytope of the
b-matching model (1) (2) (3) with the blossom inequality (see [4]) is integral.

2 Skip Pickup and Delivery Problem

2.1 Definition of skip pickup and delivery problem

Pickup and delivery problem is defined in [5]. Given a distribution network with a set of n nodes and the
cost matrix C of the travel costs between all pairs of nodes, where cij is the cost - distance between nodes
i and j. Let us denote dkl the number of skips that has to be transported from node k to node l. Vehicles
with capacity Q are used for pickup and delivery and they can start in any node. All routes have to be
cyclical, each vehicle has to come back to the node it starts from. The objective is to minimize total cost
of all routes. The optimal solution is a set of cyclical routes, for each of them a depot is specified. The
cyclical routes have to cover all pickup and delivery demands D. Triangular inequality and symmetry for
C is supposed. The problem can be solved by the method which is shown on the example as follows.

The skip pickup and delivery problem is a special case of the pickup and delivery problem with
transfers and split demand SDPDPT [3], where capacity of vehicles is Q=1. The mathematical model of
SDPDPT is:
Parameters:
C matrix of the length of arcs,
D matrix of the goods flows between two nodes,
Q = 1 the capacity of the vehicle,
n the number of nodes.

Variables:
yij number of vehicles going thru the arc (i, j) (i, j = 1, 2, ..., n+ 1, i ̸= j),
xkl
ij an amount of goods (a part of the total amount dkl) transported from node i to node j,

(i, j = 1, 2, ..., n+ 1, i ̸= j, k, l = 1, 2, ..., n, k ̸= l).

The SDPDPT model:
F (Y ) =

∑
i,j

cijyij → min, (4)

∑
i

yij −
∑
i

yji = 0, j = 1, 2, ..., n (5)

∑
i

xkl
ij −

∑
i

xkl
ji =


−dkl, j = k

dkl, j = l

0, j ̸= k, l

 k, l = 1, 2, ..., n, k ̸= l (6)

∑
k,l

xkl
ij ≤ Qyij , i, j = 1, 2, ..., n, i ̸= j (7)

xkl
ij ≥ 0 integer, k, l = 1, 2, ..., n, k ̸= l, i, j = 1, 2, ..., n, i ̸= j (8)

yij ≥ 0 integer, i, j = 1, 2, ..., n, i ̸= j . (9)

Comment.The model (5)-(10) is a multi-product flow problem, then the matrix of the constraints
is not totally unimodular, even if Q = 1, and (see [4] [2]) therefore the polyhedron of the model is not
integral.

Lemma 1: If the non negative costs matrix satisfies the triangular inequality then the length cij of
the arc (i, j) is less or equal than the length of any path from the node i to the node j.

Proceedings of 30th International Conference Mathematical Methods in Economics

- 683 -



Proof. Let us have the path (k1, k2, ..., ks), where k1 = i and ks = j then cij ≤ ci,k2 + ck2,j ≤
ck1,k2 + ck2,ks ≤ ck1,k2 + ck2,k3 + ck3,ks ≤ · · · ≤ ck1,k2 + ck2,k3 + · · ·+ cks−1,ks .

Lemma 2: Let (Y,X) holds the constraints (6)-(10) and one skip from the transport requirement dij
is transported thru the path P = (k1, k2, ..., ks), where k1 = i and ks = j. Let (Y ′, X ′) is the solution
obtained from (Y,X), where the transport of this skip thru the path P is replaced by the arc (i, j). Then
F (Y ) ≥ F (Y ′).

Proof follows from the lemma 1.

Proposition 1. Let the matrix C is nonnegative symmetric with triangular inequality, transport require-
ment matrix D is integer and the capacity of vehicles is equal one. Then the skip pickup and delivery
problem can be solved in polynomial time by the model (11)-(13).

Proof. It follows from lemma 2 that all skip transport requirements dij have to transported direct thru
arc (i, j). So the solution Y has to meet the flow equation (12) to ensure the existence a set of cyclical
routes and inequalities (13) which ensures all transport requirements D. The constraints matrix of the
model (11)-(13) is node-arc matrix, which is totally unimodular, therefore the polytope of the model is
integral, so all extremal solutions are integer.

z =
∑
(i,j)

cijyij → min (10)

∑
(i,j),i ̸=j

yij +
∑

(j,k),j ̸=k

yjk = 0, j = 1, 2, ..., n (11)

yij ≥ dij , i, j = 1, 2, ..., n (12)

Example. There are 5 nodes and capacity of vehicle one. Travel costs C and transport requirements
Q are :

C =


0 3 7 3 2

3 0 2 1 6

7 2 0 2 3

3 1 2 0 6

4 6 3 6 0

 D =


0 0 0 0 4

1 0 2 5 0

0 0 0 0 1

0 0 0 0 0

0 3 0 0 0

 and the solution Y =


0 0 0 0 4

1 0 2 5 0

0 1 0 0 1

1 4 0 0 0

2 3 0 0 0

 is

optimal.

The number of vehicles traveling thru edge (i, j) without load is y32 = 1, y41 = 3, y42 = 4, y51 = 2
with cost 17. The number of full loaded vehicle going thru edges is yij = qij with costs 41. Total costs
41+17=58 are optimal.

2.2 Cyclical routes generation

A number of vehicles entering each node equals to a number of vehicles leaving it in the optimal solution
of the model (11), (12) and (13). For generation of a set of the cyclical routes, each in the form of a path
(i1, i2, ..., it), the following general algorithm can be used (see [3]):

Algorithm for the route generation:
Step 1. If yij = 0 for all arcs (i, j), it is not possible to generate any route, otherwise select any arc
(i1, i2), yi1,i2 > 0. Set yi1,i2 = yi1,i2 − 1 and t = 2.

Step 2. Repeat while i1 ̸= it : Select any arc (it, yt+1) for yit,it+1 > 0. Set yit,it+1 = yit,it+1 − 1 and
t = t+ 1 .

Example.

Using the optimal value of variables y and the algorithm for cyclical route generation we get the routes
in the table 1.
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cyclical route number of routes

1-5-1 2

1-5-2-1 1

1-5-2-4-1 1

2-4-2 4

2-3-5-2 1

2-3-2 1

Table 1: Optimal routes
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