
Double system parts optimization: static and

dynamic model

Jan Pelikán1, Jǐŕı Henzler2

Abstract. A proposed optimization model deals with the problem of re-
serves for the functional components-parts of mechanism in order to increase
its reliability. The following factors are taken into consideration: the proba-
bility of the failure-free run of a part without a reserve, the probability of the
failure-free run of a part with a reserve, the mean value of losses caused by
the part’s malfunction without a reserve, the mean value of losses caused by
the part’s malfunction with a reserve, costs of the purchase and maintenance
of the reserve for the given parts. The values of these parts’ failure probabili-
ties are supposed to be known in advance, the losses caused by this failure are
estimated. Statistical independence of the failures of those parts is supposed.
In the model, the costs of the parts’ doubling are supposed to be limited to
a fixed value. As a result of the problem solution, the parts of the model are
sorted into two groups: the parts which are to be doubled and the parts which
are not. The static model as well as the dynamic one, in which the failures are
considered as Poisson events are described, including numerical examples.
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1 Introduction

Complex mechanisms are composed of a great number of components. Each of the parts is responsible
for the right functioning of the whole system and vice versa, each part’s failure can disturb the system
or completely put it out of operation and cause damages in its effect.

One of the ways of eliminating or at least diminishing these damages is doubling of some important
parts. Having these parts doubled, there is a possibility to exchange immediately a non-functional part
by a functional one (or in other words, the failure is reduced only to a necessary time of a switch-over).

On the other side there are costs of doubling, primarily the price of a doubled part. For that reason
not all of the parts can be doubled, especially the expensive ones and also those whose failure is not
bringing so expensive damages.

2 Double system parts optimization model

If we want to know which parts are to be doubled, the following optimization model can be used. First
we introduce the presumption of the model.

Let us suppose n parts of the system (aggregates, components) Z1, Z2, . . . , Zn. Each of these parts is
characterized by:

pi and pi − probabilities of the failure-free run of Zi without and a with reserve,

qi and qi − the mean value of losses caused by Zi’s disorders without and with a reserve,
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ci − costs of the purchase and maintenance of the reserve for Zi.

Next we suppose:

• a statistical independence of the failures of those parts,

• the costs of the parts’ doubling are limited to the amount K.

Let us introduce 0-1 variables x1, x2, . . . , xn, the variable xi involves the decision between the doubling

of Zi (xi = 1) or not (xi = 0), see [3]. Total costs of the reserves for the parts are
n
∑

i=1

cixi and since the

resources for reserves are limited by K, so it has to be valid

n
∑

i=1

cixi ≤ K. (1)

On that conditions we can:

a) maximize the reliability of the system, that is failure-free run,

b) minimize the mean value of the sum of losses caused by the part’s disorders.

In the case a) the probability of the failure-free state of the system is the product of the probabilities
of the failure-free states of all the parts.

The part Zi will be failure-free with the probability pi, if it has a reserve (xi = 1). If the part Zi

is without reserve (xi = 0) then the failure-free probability is pi. Altogether the probability of the part
Zi’s failure-free state can be put in the form pi + (pi − pi)xi (see [1]). Hence the total probability of the
failure-free state expresses the whole system’s reliability:

r(x) =
n

∏

i=1

[pi + (pi − pi)xi]. (2)

After logarithming the function r(x) in order to make the objective function linear we get the objective
function in the form

log r(x) =

n
∑

i=1

log[pi + (pi − pi)xi]. (3)

Since the expression log[pi + (pi − pi)xi] for xi = 0 equals log(pi) and for xi = 1 equals log(pi), we
can write the expression log[pi + (pi − pi)xi] in the form (1 − xi) log(pi) + xi log(pi)”:

log r(x) =

n
∑

i=1

[(1 − xi) log(pi) + xi log(pi)] =

n
∑

i=1

log(pi) +

n
∑

i=1

xi log(pi/pi) (4)

The maximum reliability model is as follows:

log r(x) =

n
∑

i=1

[log(pi) + xi log(pi/pi)],

n
∑

i=1

cixi ≤ K, xi ∈ {0, 1}, i = 1, 2, ..., n. (5)

In the case b) the mean value of the losses caused by the part Zi’s failure is without the reserve qi

and with the reserve qi. The mean value of the total losses is as follows:

z(x) =

n
∑

i=1

[(1 − xi)qi + xiqi] =

n
∑

i=1

[qi − xi∆qi], where ∆qi = qi − qi. (6)

The minimal losses model is as follows:

z(x) =

n
∑

i=1

[qi − xi∆qi] −→ min,

n
∑

i=1

cixi ≤ K, xi ∈ {0, 1}, i = 1, 2, ..., n. (7)
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3 Two models

Now, two models can be distinguished. The first one is a one-case situation, when the function operates
for a short period - static case. The second one is a long-time model for a longer time period - dynamic
model.

3.1 Static model

The probability of the components’ failure Zi will be denoted as πi. Consequently the probability of the
failure-free run of the part without a reserve is pi = 1 − πi and the probability of the failure-free run of
the part with a reserve is pi = 1 − π2

i
.

Let the loss caused by one failure of the part Zi be denoted by Qi; then the mean value of the loss is

qi = πiQi in case when there is no reserve,

qi = π2
i
Qi in case when there is a reserve for the part Zi.

Example 1. Let us have parts Z1, Z2, Z3, Z4, Z5. Main characteristics of those parts are contained in
Table 1. The costs of the parts’ doubling are limited by the amount K = 100.

Z1 Z2 Z3 Z4 Z5

pi 0.9 0.8 0.9 0.93 0.91

πi = 1 − pi 0.1 0.2 0.1 0.07 0.09

π2
i

0.01 0.04 0.01 0.0049 0.0081

pi = 1 − π2
i

0.99 0.96 0.99 0.9951 0.9919

ci 80 30 35 50 20

Qi 1666 250 333 1613 989

qi = Qiπi 166 50 33 113 89

qi = Qiπ
2
i

16.6 10 3.3 8 8

∆qi = qi − qi 150 40 30 105 81

Table 1 Characteristics of the static model

Reliability model which maximizes the failure-free probability is:

log(r(x)) = log(0.548402) + x1 log(0.99/0.9) + x2 log(0.96/0.8) + (8)

+x3 log(0.99/0.9) + x4 log(0.9951/0.93) + x5 log(0.91/0.9919) −→ max,

80x1 + 30x2 + 35x3 + 50x4 + 20x5 ≤ 100, x1, x2, x3, x4, x5 ∈ {0, 1}. (9)

By using standard software LINGO we get the optimal solution x = (0, 1, 1, 0, 1) with the failure-free
probability equal 0.789041, which is maximal. From the result follows that it has to double Z2, Z3, Z5.

Model which minimizes the mean value of the total losses is:

z(x) = 451.9 − 150x1 − 40x2 − 30x3 − 105x4 − 81x5 −→ min, (10)

80x1 + 30x2 + 35x3 + 50x4 + 20x5 ≤ 100, x1, x2, x3, x4, x5 ∈ {0, 1}. (11)

When we use again LINGO system, we get the optimal solution x = (1, 0, 0, 0, 1) with the minimal
value of losses 220.9 in the mean value. According to this solution only the parts Z1 and Z5 will be
doubled. The differences in the solutions obtained above we can explain by great influence of the amount
of the loss in the optimal solution in the second model. First solution x = (0, 1, 1, 0, 1) means the most
reliable system, but the loss is not minimal. Second solution x = (1, 0, 0, 0, 1) gives us less reliable system,
but the loss is minimal.

We can observe the values of reliability, mean loss and costs of reserves for different solutions in the
Table 2. The values with a bullet are optimal for K = 100.
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solution x reliability losses doubling cost

(0,0,0,0,0) 0.578402 451.9 0

(0,1,1,0,1) • 0.789041 300.3 85

(1,0,0,0,1) 0.657534 • 220.6 100

(1,1,1,1,1) 0.934507 45.9 215

Table 2 Static model - different solutions

3.2 Dynamic model

Let us suppose that the system’s reliability should be optimized within a period < 0, T > and the periods
between the failures of the parts are exponentially distributed. Let the mean value of the period between
two failures of the component Zi be 1/λi. The period of replacing the failed component Zi by a new one
has the fixed length ti (see Figure 1).

If the Zi is without a reserve, then the probability of the failure-free run due the part Zi is

pi = exp(−λiT ). (12)

As the number of the failures within the period < 0, T > is Poisson distributed with the mean value
λiT , the mean value of the loss caused by the part Zi in the case xi = 0 is equal to

qi = λiTQi, where the Qi is the loss caused by one failure of the part Zi. (13)

T0

t tZ

u u
1

ii
i

2

failure-free run

Figure 1 Two failures, u1, u2, in the system without a reserve part

In case that component Zi has a reserve (xi = 1), the ti is period necessary for the reserve components’
exchange, where ti << T (see Figure 2). During the period ti the failure-free probability of the system
(i.e. no failure of the reserve part) is exp(−λiti), see [2].

T0

t

reserve

t

t

u u u
1 2 3

failure-free run

Z i
i

i

i

Figure 2 Failures in system with a reserve part

As the failures of a part are treated as Poisson events and therefore independent, the probability of
failure-free run of the system in case of k failures of the part Zi or its reserve is

(exp(−λiti))
k

= exp(−kλiti). (14)

Therefore, the overall probability of failure-free run of the system consisting of the part Zi with a reserve
in the period < 0, T > is as follows
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pi = exp(−λiT )

[

T

ti

]

∑

k=0

(λiT )k

k!
exp(−kλiti) = exp(−λiT )

[

T

ti

]

∑

k=0

(λiT · exp(−λiti))
k

k!
≈ exp(λiT [exp(−λiti)−1]),

(15)
where
[

T

ti

]

, ti << T is the top number of failures in the period < 0, T >,

exp(−λiT ) (λiT )k

k! is the probability of k failures of the part Zi or its reserve,

Let us find the logarithm of the reliability function r(x); using the general formula (5) and supposing
ti << T we have

log r(x) =

n
∑

i=1

log(pi) +

n
∑

i=1

xi log(pi/pi) =

n
∑

i=1

(−λiT ) + (16)

+

n
∑

i=1

xi log

[

T

ti

]

∑

k=0

(λiT )k

k!
exp(−kλiti) ≈ −T

n
∑

i=1

λi + T

n
∑

i=1

xiλi exp(−λiti).

The mean value of the number of system failures due to the component Zi’s, i.e. qi can be established in
the following way.

The number of failures both in the part Zi and its reserve is Poisson distributed. The time between
the two failures is exponentially distributed with parameter λi. The system fails if the time interval
between the failures of the part Zi and its reserve (or vice versa) is shorter then the repair interval ti.
The probability of this event is equal 1 − exp(−λiti). Let the number of failures of the part Zi in the
interval < 0, T > be k. These failures can be taken as binomial events, with one outcome ” failure of the
reserve of Zi within interval ti, i.e. system failure” and other outcome ”no such failure within ti. Then
probability P (Xi = r), where Xi is the number of system failures due to Zi and its reserve, is as follows:

P (Xi = r) =

[

T

ti

]

∑

k=r

(

k

r

)

(1 − exp(−λiti))
r
(exp(−λiti))

k−r
·
(λiT )k

k!
exp(−λiT ) =

= (1 − exp(−λiti))
r (λiT )r

r!
exp(−λiT )

[

T

ti

]

∑

k=r

(λiT )k−r

(k − r)!
exp(−(k − r)λiti), (17)

E(Xi) =

[

T

ti

]

∑

r=0

r · P (Xi = r) = (1 − exp(−λiti))λiT exp(−λiT )

[

T

ti

]

∑

r=1

(1 − exp(−λiti))
r−1 (λiT )r−1

(r − 1)!
·

·

[

T

ti

]

∑

k=r

(λiT )k−r

(k − r)!
exp(−(k − r)λiti) = (1 − exp(−λiti))λiT exp(−λiT )

[

T

ti

]

−1
∑

s=0

(λiT )s

s!
≈ (1 − exp(−λiti))λiT,

qi = E(Xi) · Qi = (1 − exp(−λiti))λiTQi. (18)

Example 2. Let us have parts Z1, Z2, Z3, Z4, Z5 (see Table 3 for characteristics; values of ci and Qi are
the same as in the static example). Let the overall time be T = 5 [in hours]. The costs of the parts’
doubling are limited by the amount K = 100.

Reliability model which maximizes the failure-free probability is:

log(r(x)) =
n

∑

i=1

log(pi) +
n

∑

i=1

xi log(pi/pi)] ≈ −T
n

∑

i=1

λi + T
n

∑

i=1

xiλi exp(−λiti) = (19)

= −8.5 + x1 · 1.921579 + x2 · 1.446960 + +x3 · 1.701680 + x4 · 2.160696 + x5 · 0.978240 −→ max,
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Z1 Z2 Z3 Z4 Z5

λi 0.4 0.3 0.35 0.45 0.2

ti [in hours] 0.1 0.12 0.08 0.09 0.11

pi 0.135335 0.223130 0.173774 0.105399 0.367879

pi 0.924574 0.948342 0.952828 0.914567 0.978475

log(pi/pi) 1.921579 1.446960 1.701680 2.160696 0.978240

ci 80 30 35 50 20

Qi 1666 250 333 1613 989

qi 3332 375 582.75 3629.25 989

qi 130.649 13.2599 16.0907 144.048 21.5204

∆qi = qi − qi 3201.35 361.740 566.659 3485.20 967.480

Table 3 Characteristics of the dynamic model

80x1 + 30x2 + 35x3 + 50x4 + 20x5 ≤ 100, x1, x2, x3, x4, x5 ∈ {0, 1}. (20)

By using LINGO software we get the optimal solution x = (0, 1, 0, 1, 1) with the failure-free probability
equal 0,019958, which is maximal. From the result follows that it has to double Z2, Z4, Z5.

Model which minimizes the mean value of the total losses is:

z(x) = 8908 − 3201.35x1 − 361.740x2 − 566.659x3 − 3485.20x4 − 967.480x5 −→ min, (21)

80x1 + 30x2 + 35x3 + 50x4 + 20x5 ≤ 100, x1, x2, x3, x4, x5 ∈ {0, 1}. (22)

By LINGO we get we get the optimal solution x = (0, 1, 0, 1, 1) with the minimum loss equal 4093.580.

In contrary to the static model, in the dynamic model the optimal solution on respect to both maxi-
mum reliability and minimum loss is the same (see Table 4 for different solutions).

solution x reliability losses doubling cost

(0,0,0,0,0) 0.000203 8908 0

(0,1,0,1,1) 0.019958 4093.580 100

(1,1,1,1,1) 0.252368 325.571 215

Table 4 Dynamic model - different solutions
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