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Abstract. The word ”duality” has been used in various areas of science for
long time. Nevertheless, in general, there is a lack of consensus about the exact
meaning of this important notion. However, in the field of optimization, and
particularly in linear programming, the notion of duality is well understood
and remarkably useful. Various attempts to develop analogous useful duality
schemes for linear programming involving fuzzy data have been appearing since
the early days of fuzzy sets. After recalling basic results on linear programming
duality, we give examples of early attempts in extending duality to problems
involving fuzzy data, and then we discuss recent results on duality in fuzzy
linear programming and their possible application.
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1 Introduction

As pointed out by Harold Kuhn [3] the elements of duality in optimization are: (i) A pair of optimization
problem based on the same data, one a maximum problem with objective function x 7→ f(x) and the
other a minimum problem with objective function y 7→ h(y). (ii) For feasible solutions x and y to the
pair of problems, always h(y) ≥ f(x). (iii) Necessary and sufficient condition for optimality of feasible
solutions x̄ and ȳ is h(ȳ) = f(x̄).

This kind of duality is particularly clear, elegant, and remarkably useful in linear programming and its
applications. Given the practical relevance of duality theory of linear programming, it is not surprising
that attempts to develop analogous duality schemes for linear programming involving fuzzy data have
been appearing since the early days of fuzzy sets [8]. To devise such a duality scheme, we have to specify
in advance some class of permitted fuzzy numbers, define fundamental arithmetic operations with fuzzy
numbers, and clarify the meaning of inequalities between fuzzy numbers. Because this can be done in
inexhaustibly many ways, we can hardly expect a unique extension of duality to fuzzy situations, which
would be so clean and clear like that of classical linear programming. Instead, there exist several variants
of the duality theory for fuzzy linear programming, the results of which resemble in various degrees some
of the useful results established in the conventional linear programming.

After recalling basic results of duality theory of linear programming, we first present early examples
of pairs of mutually dual problems, in which only the inequalities ≤ and ≥ are allowed to become fuzzy.
The feasible solutions of such problems are nonnegative vectors of a finite dimensional real vector space,
and the degrees of constraints satisfaction and the degrees of optimality of feasible solutions are defined
by the numerical data from the underlying linear programming problem and valued extensions of binary
relations ≤ and ≥. Then we discuss duality pairs for problems in which some or all numerical data
may also be fuzzy. The duality schemes for such problems are significantly more complicated because
of necessity to extend ≤ and ≥ so that some consistent comparison of fuzzy quantities is possible. For
reader’s convenience of this extended abstract, we summarized necessary notions and results from the
theory of fuzzy sets in the Appendix.
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2 Linear Programming Duality

Given real numbers b1, b2, . . . , bm, c1, c2, . . . , cn, a11, a12, . . . , amn, we consider linear programming prob-
lems in the canonical form:

Maximize c1x1 + c2x2 + · · ·+ cnxn (1)

subject to ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi i = 1, 2, . . . ,m (2)

xj ≥ 0 j = 1, 2, . . . , n (3)

Using the same data b1, b2, . . . , bm, c1, c2, . . . , cn, a11, a12, . . . , amn, we construct another linear program-
ming problem, called the dual problem to the primal problem (1)-(3), as follows:

Minimize y1b1 + y2b2 + · · ·+ ymbm (4)

subject to y1a1j + y2a2j + · · ·+ ymamj ≥ cj j = 1, 2, . . . , n (5)

yi ≥ 0 i = 1, 2, . . . ,m (6)

It is easy to see that if one rewrites the dual problem into the form of the primal problem and again
constructs the corresponding dual, then one obtains a linear programming problem which is equivalent
to the original primal problem. In other words, the dual to the dual is the primal. Consequently, it is
just the matter of convenience which of these problems is taken as the primal problem.

The well known results on the mutual relationships between the primal and the dual can be summa-
rized as follows:

1. If x is a feasible solution of the primal problem and if y is a feasible solution of the dual problem,
then cx ≤ yb.

2. If x̄ is a feasible solution of the primal problem, and if ȳ is a feasible solution of the dual problem,
and if cx̄ = ȳb, then x̄ is optimal for the primal problem and ȳ is optimal for the dual problem.

3. If the feasible region of the primal problem is nonempty and the objective function x 7→ cx is not
bounded above on it, then the feasible region of the dual problem is empty.

4. If the feasible region of the dual problem is nonempty and the objective function y 7→ yb is not
bounded below on it, then the feasible region of the primal problem is empty.

It turns out that the following deeper results concerning mutual relation between the primal and dual
problems hold:

5. If either of the problems (1)-(3) or (4)-(6) has an optimal solution, so does the other, and the
corresponding values of the objective functions are equal.

6. If both of the problems (1)-(3) and (4)-(6) have feasible solutions, then both of them have optimal
solutions and the corresponding optimal values are equal.

7. A necessary and sufficient condition that feasible solutions x and y of the primal and dual problems
are optimal is that

xj > 0 ⇒ yAj = cj 1 ≤ j ≤ n
xj = 0 ⇐ yAj > cj 1 ≤ j ≤ n
yi > 0 ⇒ Aix = bi 1 ≤ i ≤ m
yi = 0 ⇐ Aix < bi 1 ≤ i ≤ m

where Aj and Ai stand for the j-th column and i-th row of A = {aij}, respectively.

It is also well known that the essential duality results of linear programming can be expressed as a
saddle-point property of the Lagrangian function:
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8. Let Rn+ and Rm+ denote the set of nonnegative n-vectors and m-vectors, and let L : Rn+ × Rm+ → R
be the Lagrangian function for the primal problem (1)-(3), that is, L(x, y) = cx + y(b − Ax). The
necessary and sufficient condition that x̄ ∈ Rn+ be an optimal solution of the primal problem (1)-(3)
and ȳ ∈ Rm+ be an optimal solution of the dual problem (4)-(6) is that (x̄, ȳ) be a saddle point of
L; that is, for all x ∈ Rn+ and y ∈ Rm+ ,

L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y) (7)

3 Dual Pairs of Rödder and Zimmermann

One of the early approaches to duality in linear programing problems involving fuzziness is due to Rödder
and Zimmermann [8]. To be able to state the problems considered by Rödder and Zimmermann concisely,
we first observe that the conditions (7) bring up the pair of optimization problems

maximize miny≥0 L(x, y) subject to x ∈ Rn+ (8)

minimize maxx≥0 L(x, y) subject to y ∈ Rm+ (9)

Let µ and µ′ be real valued functions on Rn+ and Rm+ , respectively; and let {νx}x∈Rn
+

and {ν′y}y∈Rm
+

be
families of real valued functions on Rm+ and Rn+, respectively. Furthermore, let ϕy and ψx be real valued
functions on Rn+ and Rm+ defined by ϕy(x) = min(µ(x), νx(y)) and ψx(y) = min(µ′(y), ν′y(x)). Now let us
consider the following pair of families of optimization problems:

Family {Py} : Given y ∈ Rm+ , maximize ϕy(x) subject to x ∈ Rn+
Family {Dx} : Given x ∈ Rn+, maximize ψx(y) subject to y ∈ Rm+

Motivated and supported by economic interpretation, Rödder and Zimmermann [8] propose to specify
functions µ and µ′ and families {νx} and {ν′y} as follows: Given an m×n matrix A, m×1 vector b, 1×n
vector c, and real numbers γ and δ, define the functions µ, µ′, νx and ν′y by

µ(x) = min(1, 1− (γ − cx)), µ′(y) = min(1, 1− (yb− δ)) (10)

νx(y) = max(0, y(b−Ax)), ν′y(x) = max(0, (yA− c)x) (11)

Strictly speaking, we do not obtain a duality scheme as conceived by Kuhn because there is no
relationship between the numbers γ and δ. Indeed, if the the family {Py}y≥0 is considered to be the
primal problem, then we have the situation in which the primal problem is completely specified by
data A, b, c and γ. However, these data are not sufficient for specification of family {Dx}x≥0 because the
definition of {Dx}x≥0 requires knowledge of δ. Thus from the point of view that the dual problem is to be
constructed only on the basis of the primal problem data, every choice of δ determines a certain family dual
to {Py}y≥0. In this sense we could say that every choice of δ gives a duality, the δ-duality. Analogously, if
the primal problem is {Dx}x≥0, then every choice of γ determines some family {Py}y≥0 dual to {Dx}x≥0,
and we obtain the γ-duality. In other words, for every γ, δ, we obtain (γ, δ)-duality. It is worth noticing
that families {Py} and {Dx} consist of uncountably many linear optimization problems. Moreover, every
problem of each of these families may have uncountably many optimal solutions. Consequently, the
solution of the problem given by family {Py}y≥0 is the family {X(y)}y≥0 of subsets of Rn+ where X(y)
is the set of maximizers of ϕy over Rn+. Analogously, the family {Y (x)}x≥0 of maximizers of ψx over Rm+
is the solution of problem given by family {Dx}x≥0. Rödder and Zimmermann propose to replace the
families {Py} and {Dx} by the families {P ′y} and {D′x} of problems defined as follows:

maximize λ subject to λ ≤ 1 + cx− γ, λ ≤ y(b−Ax), x ≥ 0 (12)

minimize η subject to η ≥ yb− δ − 1, η ≥ (c− yA)x, y ≥ 0 (13)

They call these families of optimization problems the fuzzy dual pair and claim that the families {Py}
and {Dx} become families {P ′y} and {D′x} when µ, µ′, νx and ν′y are defined by (10)-(11). To see that
this claim cannot be substantiated, it suffices to observe that the value of function ϕy cannot be greater
than 1, whereas the value of λ is not bounded above whenever A and b are such that both cx and −yAx
are positive for some x ∈ Rn+. To obtain a valid conversion, one needs to add the inequalities λ ≤ 1 and
η ≥ −1 to the constraints. Thus it seems that more suitable choice of functions νx and ν′y in the Rödder
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and Zimmermann duality scheme would be νx(y) = min(1, 1+y(b−Ax)) and ν′y(x) = min(1, 1+(yA−c)x).
Another objection to the Rödder and Zimmermann model arises from the fact that, the duality results
for the proposed fuzzy dual pair do not reduce to the standard duality results for the crisp scenario,
that is, for λ = 1, η = −1 . Again an easy remedy is to work with νx(y) = min(1, 1 + y(b − Ax)) and
ν′y(x) = min(1, 1 + (yA− c)x) instead of νx(y) = min(0, 1 + y(b−Ax)) and ν′y(x) = min(0, 1 + (yA− c)x).

4 Duality Pairs of Bector and Chandra

In contrast to the usual practice, in the Rödder and Zimmermann model, the range of membership
functions µ and µ′ is (−∞, 1], and the range of membership functions νx and ν′u is [0,∞) or [1,∞)
instead of usual [0, 1]. Bector and Chandra [1] propose to replace the relations ≤ and ≥ appearing in
the dual pair of linear programming problems by their valued extensions. In particular, the inequality
≤ appearing in the ith constraint of the primal problem is replaced by its valued extension �i whose
membership function µ�i : R× R→ [0, 1] is defined by

µ�i
(α, β) =


1 if α ≤ β

1− α−β
pi

if β < α ≤ β + pi

0 if β + pi < α

where pi is a positive number. Analogously, the inequality ≥ appearing in the jth constraint of the dual
problem is replaced by its valued relation �j with membership function

µ�j (α, β) =


1 if α ≥ β

1− β−α
qj

if β > α ≥ β − qj
0 if β − qj > α

where qj is a positive number. The degree of satisfaction with which x ∈ Rn fulfills the ith fuzzy constraint
Aix �i bi of the primal problem is expressed by the fuzzy subset of Rn whose membership function µi is
defined by µi(x) = µ�i

(Aix, bi), and the degree of satisfaction with which y ∈ Rm fulfills the jth fuzzy
constraint yAj �j cj of the dual problem is expressed by the fuzzy subset of Rm whose membership
function µj is defined by µj(y) = µ�j (yAj , cj). Similarly, we can express the degree of satisfaction with
a prescribed aspiration level γ of the objective function value cx by the fuzzy subset of Rn given by
µ0(x) = µ�0

(cx, γ) where, for the tolerance given by a positive number p0, the membership function µ�0

is defined by

µ�0
(α, β) =


1 if α ≥ β

1− β−α
p0

if β > α ≥ β − p0
0 if β − p0 > α

Analogously, for the degree of satisfaction with the aspiration level δ and tolerance q0 in the dual problem,
we have µ0(y) = µ�0(δ, yb) where

µ�0
(α, β) =


1 if α ≤ β

1− α−β
q0

if β < α ≤ β + q0

0 if β + q0 < α

This leads to the following pair of linear programming problems:

Given positive numbers p0, p1, . . . , pm, and a real number γ, maximize λ subject to

(λ− 1)p0 ≤ cx− γ
(λ− 1)pi ≤ bi −Aix, 1 ≤ i ≤ m
0 ≤ λ ≤ 1, x ≥ 0

(14)

Given positive numbers q0, q1, . . . , qn, and a real number δ, minimize −η subject to

(η − 1)q0 ≤ δ − yb
(η − 1)qj ≤ yAj − cj , 1 ≤ j ≤ n
0 ≤ η ≤ 1, y ≥ 0

(15)
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Bector and Chandra call this pair the modified fuzzy pair of primal dual linear programming problems.
Again we see that the dual problem is not stated by using only the data available in the primal problem.
Indeed, if the problem (14) is considered to be the primal problem, then to state its dual problem one
needs additional information; namely, a number δ and numbers q0, q1, . . . , qn; if problem (15) is considered
to be primal, then one needs a number γ and numbers p0, p1, . . . , pm.

5 Duality Pairs of Ramı́k

As mentioned in the Introduction, when we wish to develop a sensible duality scheme for linear programing
problems in which also the numerical data may be fuzzy, then we need tools for comparing fuzzy numbers.
Recently, Ramı́k [6] and [5] (see also [2]) proposed a rather general duality scheme in which the fuzzy
quantities are compared by means of extensions of binary relations ≤ and ≥ on R to fuzzy relations on
F(R)×F(R). Moreover, this scheme does not require external specification of goals or aspiration levels,
and a number of earlier duality schemes can be obtained as special cases. A simple version of this scheme
can briefly be described as follows.

Given fuzzy numbers B1, B2, . . . , Bm;C1, C2, . . . , Cn;A11, A12, . . . , Amn from some class of fuzzy num-
bers, and fuzzy extensions �1, . . . ,�m;�1, . . . ,�n of ≤ and ≥, respectively, we construct the pair of
problems

Maximize C1x1 + C2x2 + · · ·+ Cnxn (16)

subject to Ai1x1 +Ai2x2 + · · ·+Ainxn �i Bi i = 1, 2, . . . ,m (17)

xj ≥ 0 j = 1, 2, . . . , n (18)

Minimize y1B1 + y2B2 + · · ·+ ymBm (19)

subject to y1A1j + y2A2j + · · ·+ ymAmj �j Cj j = 1, 2, . . . , n (20)

yi ≥ 0 i = 1, 2, . . . ,m (21)

where “+” is defined by the standard extension principle, and where the meanings of “feasibility” and
“optimality” are specified as follows.

Let β be a positive number from [0, 1]. By a β-feasible region of problem (16)-(18) we understand the
β-cut of fuzzy subset X of Rn given by membership function

µX(x) =

{
min

1≤i≤m
µ�i

(Ai1x1 + · · ·+Ainxn, Bi) if xj ≥ 0 for all j

0 otherwise
(22)

and by a β-feasible solutions of problem (16)-(18) we understand the elements of β-feasible region.

To explain ”maximization”, we first observe that a feasible solution x̄ of non fuzzy problem (1)-(3)
is optimal exactly when there is no feasible solution x such that cx > cx̄. This suggests to consider a
fuzzy extension � of ≥ and to introduce, for each positive α from [0, 1], the binary relations ≥α and <α
on F(R) by “a ≥α b” means µ�(a, b) ≥ α, and “a <α b” means (µ�(a, b) ≥ α and µ�(b, a) < α). Now
let α and β be positive numbers from [0, 1]. We say that a β-feasible solution x̄ of (16)-(18) is (α, β)-
maximal solution of (16)-(18) if there is no β-feasible solution of (16)-(18) x different from x̄ such that
C1x̄1+C2x̄2+ · · ·+Cnx̄n <α C1x1+C2x2+ · · ·+Cnxn. The notions of β-feasibility and (α, β)-minimality
for the dual problem (19)-(21) are defined analogously.

6 Appendix

Let U be a fixed nonempty set and let X,Y and Z be subsets of U . Recall that if f is a function from
Y to Z and X is a subset of Y , then the function g from X to Z such that g(x) = f(x) for all x ∈ X
is called the restriction of f to X, and f is called an extension of g to Y . If A is a subset of X, then
the characteristic function of A is the function χA from X to {0, 1} such that χA(x) = 1 for x ∈ X and
χA(x) = 0 otherwise.

The phrase “membership function of a fuzzy set” is very common one in the fuzzy set literature.
Obviously such a phrase and similar ones strongly suggest that ”fuzzy sets” and ”membership functions

Proceedings of 30th International Conference Mathematical Methods in Economics

- 761 -



of fuzzy sets” are different objects. We follow the opinion that fuzzy sets are special nested families
of subsets of a set. In more detail (for full details, see [4] or [7]), a fuzzy subset A of X is the family
{Aα}α∈[0,1] of subsets of X such that A0 = X,Aβ ⊂ Aα whenever 0 ≤ α ≤ β ≤ 1, and Aβ = ∩0≤α<βAα
whenever 0 < β ≤ 1. If A is a fuzzy subset of X, then the membership function of A is the function
µA : X → [0, 1] defined by µA(x) = sup{α : x ∈ Aα}, and the function value µA(x) is called the
membership degree of x in A. For each α ∈ [0, 1], the set {x ∈ X | µA(x) ≥ α} is called the α-cut of A.
It is worth noting that if f is an arbitrary function from X into [0, 1], then the family A = {Aα}α∈[0,1]
of sets {x ∈ X | f(x) ≥ α} is a fuzzy subset of X and f is a membership function of A. Moreover, if
µA is the membership function of a fuzzy subset of A, then the α-cut of A coincides with Aα for each
α ∈ [0, 1]. Therefore, there is a natural one-to-one correspondence between fuzzy subsets of X and real
functions from X to [0, 1], and each fuzzy subset A of X can be specified by its membership function
µA and vice-versa. Consequently, it does not matter whether we introduce or discuss the properties of
fuzzy subsets of a set in terms of families subsets or membership functions, and the meaning of phrases
like ”the fuzzy subset of X determined by a membership function µ : X → [0, 1]” or ”the fuzzy set
µ : X → [0, 1]” becomes clear. Because of the existence of one-to-one correspondence between the subsets
and characteristic functions of subsets and because there is also a one-to-one correspondence between
the characteristic functions of subsets and the membership functions with values in {0, 1}, we can view
subsets of X as fuzzy subsets of X. When we need to distinguish the latter from the other fuzzy subsets
of X, we call them the crisp fuzzy subsets of X. We denote the collection of all fuzzy subsets of X by
F(X) and the collection of all crisp fuzzy subsets of X by P(X).

If A is from F(X), then the set {x ∈ X : µA(x) = 1} is called the core of A. If B is from F(X)
and A is from P(X), and if µB(x) = µA(x) for all x in the core of A, then we say that B is a valued
extension of A. Because of the existence of one-to-one correspondence between subsets of X and the
elements of P(X), we also have valued extensions of subsets of X. Recall that subsets of X × X are
called binary relations on X and fuzzy subsets of X × X are called fuzzy relation on X. Applying the
previous construction to X × X, we obtain valued extensions of crisp fuzzy relations on X and valued
extensions of binary relations on X. Finally, by similar construction we can obtain a valued extensions
of fuzzy relations on X to fuzzy relations on F(X).
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