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Abstract. This contribution is devoted to the risk-sensitive optimality crite-
ria in finite state Markov Decision Processes. At first, we rederive necessary and
sufficient conditions for average optimality of (classical) risk-neutral unichain
models. This approach is then extended to the risk-sensitive case, i.e., when ex-
pectation of the stream of one-stage costs (or rewards) generated by a Markov
chain is evaluated by an exponential utility function. We restrict ourselves on
irreducible or unichain Markov models where risk-sensitive average optimal-
ity is independent of the starting state. As we show this problem is closely
related to solution of (nonlinear) Poissonian equations and their connections
with nonnegative matrices.
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1 Notation and Preliminaries

In this note, we consider unichain Markov decision processes with finite state space and compact action
spaces where the stream of costs generated by the Markov processes is evaluated by an exponential utility
function (so-called risk-sensitive models) with a given risk sensitivity coefficient.

To this end, let us consider an exponential utility function, say ūγ(·), i.e. a separable utility function
with constant risk sensitivity γ ∈ R. For γ > 0 (risk averse case) ūγ(·) is convex, if γ < 0 (risk seeking
case) ūγ(·) is concave. Finally if γ=0 (risk neutral case) ūγ(·) is linear. Observe that exponential utility
function ūγ(·) is separable and multiplicative if the risk sensitivity γ ̸= 0 and additive for γ = 0. In
particular, we have uγ(ξ1 + ξ2) = uγ(ξ1) · uγ(ξ2) if γ ̸= 0 and uγ(ξ1 + ξ2) ≡ ξ1 + ξ2 for γ = 0.

Then the utility assigned to the (random) outcome ξ is given by

ūγ(ξ) :=

{
(sign γ) exp(γξ), if γ ̸= 0,

ξ for γ = 0.
(1)

For what follows let uγ(ξ) := exp(γξ), hence ūγ(ξ) = (sign γ)uγ(ξ). Obviously ūγ(·) is continuous
and strictly increasing. Then for the corresponding certainty equivalent, say Zγ(ξ), since ūγ(Zγ(ξ)) =
E [ūγ(ξ)] (E is reserved for expectation), we immediately get

Zγ(ξ) =

{
γ−1 ln{E uγ(ξ)}, if γ ̸= 0

E [ξ] for γ = 0.
(2)

In what follows, we consider a Markov decision chain X = {Xn, n = 0, 1, . . .} with finite state space
I = {1, 2, . . . , N} and a compact set Ai of possible decisions (actions) in state i ∈ I. Supposing that in
state i ∈ I action a ∈ Ai is selected, then state j is reached in the next transition with a given probability
pij(a) and one-stage transition cost cij will be accrued to such transition.
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A (Markovian) policy controlling the decision process is given by a sequence of decisions (actions) at
every time point. In particular, policy controlling the process, π = (f0, f1, . . .), with πk = (fk, fk+1, . . .)
for k = 1, 2, . . ., hence also π = (f0, f1, . . . , fk−1, πk) is identified by a sequence of decision vectors
{fn, n = 0, 1, . . .} where fn ∈ F ≡ A1 × . . . × AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is the decision
(or action) taken at the nth transition if the chain X is in state i. Policy π which selects at all times
the same decision rule, i.e. π ∼ (f), is called stationary, hence X is a homogeneous Markov chain with
transition probability matrix P (f) whose ij-th element equals pij(fi).

Let ξαn =
∑n−1

k=0 α
kcXk,Xk+1

with α ∈ (0, 1), resp. ξn =
∑n−1

k=0 cXk,Xk+1
, be the stream of α-discounted,

resp. undiscounted, transition costs received in the n next transitions of the considered Markov chain X.
Similarly let ξ(m,n) be reserved for the total (random) cost obtained from the mth up to the nth transition
(obviously, ξn = cX0,X1 + ξ(1,n)). Moreover, if the risk sensitivity γ ̸= 0 then ūγ(ξαn ) = (sign γ)uγ(ξαn ),
resp. ūγ(ξn) = (sign γ)uγ(ξn), is the (random) utility assigned to ξαn , resp. to ξn. Observe that

ξα := limn→∞ ξαn is well defined, hence uγ(ξα) = exp(γ
∞∑
k=0

αkcXk,Xk+1
).

In the overwhelming literature on stochastic dynamic programming attention was mostly paid to the
risk neutral case, i.e. if γ = 0. The following results and techniques adapted from [8] and [12] will be useful
for derivation of necessary and sufficient average optimality conditions and for their further extensions
to risk-sensitive models.

Introducing for arbitrary g, wj ∈ R (i, j ∈ I) the discrepancy function

φ̃i,j(w, g) = ci,j − wi + wj − g (3)

we can easily verify the following identities:

ξαn =
1− αn

1− α
g + wX0 − αn wXn +

n−1∑
k=0

αk[φ̃Xk,Xk+1
(w, g)− (1− α)wXk+1

] (4)

ξn = ng + wX0 − wXn +
n−1∑
k=0

φ̃Xk,Xk+1
(w, g). (5)

If the process starts in state i and policy π = (fn) is followed then for the expected α-discounted or
undiscounted total cost V π

i (α, n) := E π
i ξ

α
n , V π

i (n) := E π
i ξn we immediately get by (4)–(5)

V π
i (α, n) =

1− αn

1− α
g + wi + E π

i {
n−1∑
k=0

αk[φ̃Xk,Xk+1
(w, g)− (1− α)wXk+1

]− αn wXn} (6)

V π
i (n) = ng + wi + E π

i {
n−1∑
k=0

φ̃Xk,Xk+1
(w, g)− wXn}. (7)

Observe that

E π
i

n−1∑
k=0

φ̃Xk,Xk+1
(w, g) =

∑
j∈I

pij(fi){φ̃i,j(w, g) + E π1

j

n−1∑
k=1

φ̃Xk,Xk+1
(w, g)}. (8)

It is well-known from the dynamic programming literature (cf. e.g. [1, 6, 9, 10, 16]) that

If there exists state i0 ∈ I that is accessible from any state i ∈ I for every f ∈ F then (∗)

(i) For every f ∈ F the resulting transition probability matrix P (f) is unichain (i.e. P (f) have no two
disjoint closed sets),

(ii) There exists decision vector f̂ ∈ F along with numbers ŵi, i ∈ I (unique up to additive constant),
and ĝ being the solution of the set of (nonlinear) equations

ŵi + ĝ = min
a∈Ai

∑
j∈I

pij(a)[ci,j + ŵj ] =
∑
j∈I

pij(f̂i)[ci,j + ŵj ], (9)

φi(f, f̂) :=
∑
j∈I

pij(f)[ci,j + ŵj ]− ŵi − ĝ ≥ 0 with φi(f̂ , f̂) = 0. (10)
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From (6), (7), (10) we immediately get for V π
i (α) := lim

n→∞
V π
i (α, n)

V π̂
i (α) =

1

1− α
ĝ + ŵi − (1− α)E π̂

i

∞∑
k=0

αkŵXk+1
, V π̂

i (n) = nĝ + ŵi − E π̂
i ŵn

hence for stationary policy π ∼ (f̂) and arbitrary policy π = (fn)

lim
n→∞

1

n
V π̂
i (n) = lim

α↑1
(1− α)V π̂

i (α) = ĝ (11)

lim
n→∞

1

n
V π
i (n) = ĝ = lim

α↑1
(1− α)V π

i (α) if and only if

lim
n→∞

1

n
E π

i

n−1∑
k=0

φXk
(fn, f̂) = 0. (12)

2 Risk-Sensitive Optimality

On inserting the discrepancy function given by (3) in the exponential function uγ(·) by (4) we get for the
stream of discounted costs

uγ(ξαn ) = e
γ

n−1∑
k=0

αkcXk,Xk+1
(13)

= e
γ[

n−1∑
k=0

αkg+wX0−αn wXn ]
× e

γ
n−1∑
k=0

αk[φ̃Xk,Xk+1
(w,g)−(1−α)wXk+1

]

and for Uπ
i (γ, α, n) := E π

i u
γ(ξαn ) we have

Uπ
i (γ, α, n) = eγ[

1−αn

1−α g+wi] × E π
i e

γ{
n−1∑
k=0

αk[φ̃Xk,Xk+1
(w,g)−(1−α)wXk+1

]−αn wXn}
(14)

Observe that wi’s are bounded, i.e. |wXk
| ≤ K for some K ≥ 0. Hence it holds

e−|γ|K ≤ e
γ (1−α)

∞∑
k=1

αk wXk+1 ≤ e|γ|K (15)

and for n tending to infinity from (14) we immediately get for Uπ
i (γ, α) := lim

n→∞
Uπ
i (γ, α, n)

Uπ
i (γ, α) = eγ[

1
1−α g+wi] × E π

i e
γ

∞∑
k=0

αk[φ̃Xk,Xk+1
(w,g)+(1−α)wXk+1

]
(16)

Similarly for undiscounted models we get by (13), (14)

Uπ
i (γ, n) = eγ[ng+wi] × E π

i e
γ[

n−1∑
k=0

φ̃Xk,Xk+1
(w,g)−wXn ]

(17)

Now observe that

E π
i e

γ
n−1∑
k=0

φ̃Xk,Xk+1
(w,g)

=
∑
j∈I

pij(f
0
i ) e

γ[ci,j−wi+wj−g] × E π1

j e
γ

n−1∑
k=1

φ̃Xk,Xk+1
(w,g)

(18)

E π
j {e

γ
n−1∑
k=m

φ̃Xk,Xk+1
(w,g)

|Xm = j} =
∑
ℓ∈I

pjℓ(f
m
j ) eγ[cj,ℓ−wj+wℓ−g] × E πm+1

ℓ e
γ

n−1∑
k=m+1

φ̃Xk,Xk+1
(w,g)

(19)

Employing (18) the following facts can be easily verified by (16), (17).
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Result 1.

(i) Let for a given stationary policy π ∼ (f) there exist g(f), wj(f)’s such that∑
j∈I

pij(fi) e
γ[ci,j−wi(f)+wj(f)−g(f)] =

∑
j∈I

pij(fi) e
γ φ̃i,j(w(f),g(f)) = 1, i ∈ I. (20)

Then
Uπ
i (γ, α) = eγ(

1
1−α g(f)+wi(f)) × E π

i e
−γ (1−α)

∞∑
k=1

αk wXk
(f)

(21)

Uπ
i (γ, n) = eγ(ng(f)+wi(f)) × E π

i e
−γ wXn (f) (22)

(ii) If it is possible to select g = g∗ and wj = w∗
j ’s, resp. g = ĝ and wj = ŵj ’s, such that

for any f ∈ F , all i ∈ I and some f∗ ∈ F , resp. f̂ ∈ F ,∑
j∈I

pij(fi) e
γ φ̃i,j(w

∗,g∗) ≤ 1 with
∑
j∈I

pij(f
∗
i ) e

γ φ̃i,j(w
∗,g∗) = 1 (23)

respectively∑
j∈I

pij(fi) e
γ φ̃i,j(ŵ,ĝ) ≥ 1 with

∑
j∈I

pij(f̂i) e
γ φ̃i,j(ŵ,ĝ) = 1 (24)

then

eγ(
1

1−α ĝ+ŵi) · e−|γ|K ≤ U π̂
i (γ, α) ≤ Uπ∗

i (γ, α) ≤ eγ(
1

1−α g∗+w∗
i ) · e|γ|K (25)

eγ(nĝ+ŵi) · e−|γ|K ≤ U π̂
i (γ, n) ≤ Uπ∗

i (γ, n)) ≤ eγ(ng
∗+w∗

i ) · e|γ|K . (26)

Result 2. Let (cf. (2)) Zπ
i (γ, α) =

1
γ lnUπ

i (γ, α), Zπ
i (γ, n) =

1
γ lnUπ

i (γ, n).

Then by (25), (26) for stationary policies π̂ ∼ (f̂), π∗ ∼ (f∗), and by (16), (17) for an arbitrary policy
π = (fn)

lim
n→∞

1

n
Z π̂
i (γ, n) = lim

α↑1
(1− α)Z π̂

i (γ, α) = ĝ, lim
n→∞

1

n
Zπ∗

i (γ, n) = lim
α↑1

(1− α)Zπ∗

i (γ, α) = g∗ (27)

lim
n→∞

1

n
Zπ
i (γ, n) = g∗, resp. lim

n→∞

1

n
Zπ
i (γ, n) = ĝ, if and only if

lim
n→∞

1

n
ln[E π

i e
γ

n−1∑
k=0

φ̃Xk,Xk+1
(w∗,g∗)

] = 0, resp. lim
n→∞

1

n
ln[E π

i e
γ

n−1∑
k=0

φ̃Xk,Xk+1
(ŵ,ĝ)

] = 0. (28)

3 Poissonian Equations

The system of equations (20) for the considered stationary policy π ∼ (f) and the nonlinear systems of
equations (23), (24) for finding stationary policy with maximal/minimal value of g(f) can be also written
as

eγ[g(f)+wi(f)] =
∑
j∈I

pij(fi) e
γ[ci,j+wj(f)] (i ∈ I) (29)

eγ[g
∗+w∗

i ] = max
f∈F

∑
j∈I

pij(fi) e
γ[ci,j+w∗

j ] (i ∈ I) (30)

eγ[ĝ+ŵi] = min
f∈F

∑
j∈I

pij(fi) e
γ[ci,j+ŵj ] (i ∈ I) (31)

respectively, for the values g(f), ĝ, g∗, wi(f), w
∗
i , ŵi (i = 1, . . . , N); obviously, these values depend on

the selected risk sensitivity γ. Eqs. (30), (31) can be called the γ-average reward/cost optimality equation.
In particular, if γ ↓ 0 using the Taylor expansion by (29), resp. (31), we have

g(f) + wi(f) =
∑
j∈I

pij(fi) [ci,j + wj(f)], resp. ĝ + ŵi = min
f∈F

∑
j∈I

pij(fi) [ci,j + ŵj ]

that well corresponds to (9).
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On introducing new variables vi(f) := eγwi(f), ρ(f) := eγg(f), and on replacing transition probabilities
pij(fi)’s by general nonnegative numbers defined by qij(fi) := pij(fi) · eγcij (29) can be alternatively
written as the following set of equations

ρ(f)vi(f) =
∑
j∈I

qij(fi) vj(f) (i ∈ I) (32)

and (30), (31) can be rewritten as the following sets of nonlinear equations (here v̂i := eγŵi , v∗i := eγw
∗
i ,

ρ̂ = eγĝ, ρ∗ := eγg
∗
)

ρ∗v∗i = max
f∈F

∑
j∈I

qij(fi) v
∗
j , ρ̂ v̂i = min

f∈F

∑
j∈I

qij(fi) v̂j (i ∈ I) (33)

called γ-average reward/cost optimality equation in multiplicative form.

For what follows it is convenient to consider (32), (33) in matrix form. To this end, we introduce the
N ×N matrix Q(f) = [qij(fi)] with spectral radius (Perron eigenvalue) ρ(f) along with its right Perron

eigenvector v(f) = [vi(fi)], hence (cf. [5]) ρ(f)v(f) = Q(f)v(f). Similarly, for v(f∗) = v∗, v(f̂) = v̂ (33)
can be written in matrix form as

ρ∗v∗ = max
f∈F

Q(f)v∗, ρ̂ v̂ = min
f∈F

Q(f)v̂. (34)

Recall that vectorial maximum and minimum in (34) should be considered componentwise and v̂, v∗ are
unique up to multiplicative constant.

Furthermore, if the transition probability matrix P (f) is irreducible then also Q(f) is irreducible and
the right Perron eigenvector v(f) can be selected strictly positive. To extend this assertion to unichain
models in contrast to condition (∗) for the risk neutral case it is necessary to assume existence of state

i0 ∈ I accessible from any state i ∈ I for every f ∈ F that belongs to the basic class1 of Q(f). (∗∗)

If condition (∗∗) is fulfilled it can be shown (cf. [15]) that in (30), (31) and (33) eigenvectors v(f), v̂, v∗

can be selected strictly positive and ρ∗, resp. ρ̂, is the maximum, resp. minimum, Perron eigenvalue of
the matrix family {Q(f), f ∈ F}.

So we have arrived to

Result 3. Sufficient condition for the existence of γ-average reward/costs optimality equation is the
existence of state i0 ∈ I fulfilling condition (∗∗) (trivially fulfilled for irreducible models).

In particular, for unichain models condition (∗∗) is fulfilled if this risk sensitive coefficient γ is suffi-
ciently close to zero (cf. [3, 4, 15]). Finding solution of (34) can be performed by policy or value iteration.
Details can be found e.g. in [2, 3, 7, 14, 15].

Finally, we rewrite optimality condition (28) of Result 2 in terms of Q(f), v̂, ρ̂. To this end first
observe that

E π
i0 e

γ
n−1∑
k=0

φ̃Xk,Xk+1
(ŵ,ĝ)

=
n−1∏
k=0

 ∑
ik+1∈I

pik,ik+1
(fk

ik
) eγ[cik,ik+1

+ŵik+1
−ŵik

−ĝ]


=

n−1∏
k=0

 ∑
ik+1∈I

qik,ik+1
(fk

ik
) · v̂ik+1

· v̂−1
ik

· ρ̂−1

 (35)

So equation (28) can be also written in matrix form as

lim
n→∞

1

n
ln

{
n−1∏
k=0

V̂ −1Q(fk)V̂ ρ̂−1

}
= lim

n→∞

1

n
ln

{
V̂ −1

[
n−1∏
k=0

Q(fk) · ρ̂−1

]
· V̂

}
· V̂ = 0 (36)

where the diagonal matrix V̂ = diag [v̂i] and 0 is reserved for a null matrix.

1(i.e. irreducible class with spectral radius equal to the Perron eigenvalue of Q(f))
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4 Conclusions

In this note necessary and sufficient optimality conditions for discrete time Markov decision chains are
obtained along with equations for average optimal policies both for risk-neutral and risk-sensitive models.
Our analysis is restricted to unichain models, and for the risk-sensitive case some additional assumptions
are made. For multichain models it is necessary to find suitable partition of the state space into nested
classes that retain some properties of the unichain model. Some results in this direction can be found in
[11, 15, 17, 18].
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