
Modeling financial returns by discrete stable

distributions
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Abstract. This paper develops a new approach to modeling financial returns
by introducing discrete stable distributions. It is well known that the financial
returns are not normally distributed, extremal events occur more often than
the Gaussian distribution suggests. Already in the sixties Benoit Mandelbrot
suggested a hypothesis that returns follow a stable Paretian law. Inspired by
the discrete nature of prices appearing on the markets we model the financial
returns by discrete analogues of absolutely continuous stable distributions. The
known discrete stability of random variables on N is generalized to the case of
random variables on Z. We give brief introduction to the theory of discrete
stability on Z, show connection of discrete stable random variables to their
absolutely continuous counterparts and focus mainly on methods of estimation
of parameters of these distributions from the real data of financial returns.
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1 Introduction

The observation that financial returns have heavy tails and a hypothesis that they follow stable Pare-
tian law were suggested by Benôıt Mandelbrot. Since then many mathematicians and economists were
studying the implications of this hypothesis, and stable distributions became a very important field of
probability for both theoreticians and practitioners.

The stable Paretian hypothesis assumes that the financial returns are continuous random variables,
which is the case of logarithmic returns (log(V1/V0)) or arithmetic returns ((V1 − V0)/V0). However
sometimes it is more convenient to consider simple returns computed as a difference of buy price and sell
price. These prices are quoted on the market on a discrete grid (sometimes called ticks). Then the returns
are discrete random variable and thus the assumption they follow a stable Paretian law is incorrect. A
discrete distribution that allows for heavy tails and have the stability property is needed for modeling
such returns.

The notion of discrete stability for lattice random variables on positive integers was introduced in [5]
and further studied in [1]. In [4] an extension of discrete stability for random variables on Z was pro-
posed. A discrete analogue of stable Paretian distribution was introduced and a connection to absolutely
continuous stable distributions was shown.

In this article we propose a method of parameter estimation for discrete stable distribution family
and compare it with a well known empirical characteristic function method, that was reviewed in [6].
We illustrate the quality of both methods by estimating parameters of simulated data. Finally we do an
empirical study on market data of futures prices and compare the performance of the fit with the normal
and continuous stable distribution fit.
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2 Discrete stable distributions

A random variable X is strictly stable if for all n ∈ N there is a constant an such that an
∑n

i=1
Xi

d
= X,

where Xi’s are independent copies of X. When defining stability for discrete random variables one has to
choose a different normalization, because the normalized sum an

∑n
i=1

Xi is not generally integer valued.

A definition of positive discrete stable random variables was introduced in [5], where a normalization
∑n

i=1
X̃i(pn)

d
= X was used, with X̃(pn) =

∑X
j=1

εj , where P(εi = 1) = 1 − P(εi = 0) = pn with
pn ∈ (0, 1). A positive random variable X with characteristic function

f(t) = exp
{
−λ(1− eit)γ

}
, λ > 0, γ ∈ (0, 1]

is called positive discrete stable and is denoted by PDS (γ, λ). This distribution has its support in N0 and
in case of γ = 1 corresponds to Poisson distribution. [1] showed that positive discrete stable distribution
with γ < 1 belongs to the domain of normal attraction of the absolutely continuous positive stable
distribution (stable distribution with index of stability α = γ and with skewness parameter β = 1),
whose Laplace transform is given by exp(−λtγ). The case of γ = 1 is a degenerate one, where the
normalized sum of Poisson random variables converges to a constant λ.

The discrete stability for random variables on Z was defined in [4]. The first approach to symmetric
discrete random variables uses the following normalization:

n∑

j=1

X̃j(pn)
d

−→ X, where X̃(pn) =

|X|∑

i=1

εi(pn)

and εi(pn) are taking values ±1 with probability pn and 0 with probability 1 − 2pn, with pn ↓ 0. This
normalization leads to a distribution with characteristic function

f(t) = exp

{
−λ

(
1−

1

2

(
eit + e−it

))γ}
with λ > 0, γ ∈ (0, 1].

Such a distribution is then called symmetric discrete stable and is denoted by SDS (γ, λ). This distribu-
tion belongs to the domain of normal attraction of the absolutely continuous symmetric stable distribution
with index of stability α = 2γ. Hence the case γ = 1 can be considered as a discrete version of Gaussian
distribution.

The general case of discrete random variables on Z requires once again a different normalization,
namely

n∑

j=1

X̃j(p
1

n, p
2

n)
d

−→ X, where X̃(p1n, p
2

n) =

{ ∑X
i=1

εi(p
1

n), X ≥ 0

−
∑|X|

i=1
εi(p

2

n), X < 0

and εi(p) are taking values 1 with probability p and 0 with probability 1 − p, where pin ↓ 0. The
characteristic function of such distribution takes the following form

f(t) = exp
{
−λ1

(
1− eit

)γ
− λ2

(
1− e−it

)γ}
, with λ1, λ2 > 0, γ ∈ (0, 1].

Such a distribution is called discrete stable distribution and is denoted by DS (γ, λ1, λ2). The discrete
stable distribution for γ < 1 is in the domain of normal attraction of absolutely continuous stable
distribution with index of stability α = γ and for γ = 1 in the domain of normal attraction of symmetric
stable distribution with index of stability α = 2.

3 Parameter estimation

Statistical methods of estimation in case of discrete stable distributions has several problems that inhibit
to use most of the methods - like maximum likelihood or method of moments. These methods are based
on assumptions like availability of a closed form of probability function or existence of moments up to
some order. However this is not the case of discrete stable distributions. We describe here and use ECF
method using empirical characteristic function and AML method which use M-estimator for estimation
of the parameters of discrete stable distributions.
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3.1 Empirical characteristic function method

This method was studied broadly as an alternative method of estimation when the cumulative distribution
function is not known in a closed form, but we have a closed form for characteristic function. [3] introduced
an ECF method known as “k − L procedure”. A review of different approaches to ECF method can be
found in [6].

Let {Pθ, θ ∈ Θ} be a family of probability distributions on a probability space (X ,M), where the
parametric space Θ = R

d. The characteristic function of the distribution Pθ is defined by f(t, θ) =
Eθ

[
eitX

]
and the empirical characteristic function (ECF) based on a sample of observations x1, . . . , xn

is defined by

f̂n(t) =
1

n

n∑

i=1

eitxi .

The general idea for ECF estimation is to minimize distance between f and f̂n. Since discrete
stable distributions are lattice distributions, their characteristic function is periodic with period 2π, it
is enough to to minimize the distance only on the interval [−π, π]. Choose a discrete grid of points
{t1, . . . , tk} ∈ [−π, π] and denote by

Vn =
(
f̂n(t1), . . . , f̂n(tk)

)′
and Vθ =

(
f(t1), . . . , f(tk)

)′
.

The estimate that solves minθ(Vn − Vθ)
′(Vn − Vθ) corresponds to the nonlinear OLS regression of

Vn of Vθ. [6] argues that this estimator is not efficient and [3] suggests to use nonlinear GLS regression
as follows. Denote by Ω the covariance matrix of Vn, then an efficient estimator can be obtained as a
solution of

min
θ

(Vn − Vθ)
′Ω̂−1(Vn − Vθ),

where Ω̂ is a consistent estimate of Ω.

3.2 Approximate maximum likelihood method

Let {Pθ, θ ∈ Θ} be a family of probability distributions on a probability space (X ,M), where the
parametric space Θ = R

d. In the maximum likelihood estimation one assumes the existence of a density
p(x, θ) and of a function

J(x, θ) =

(
∂p
∂θi

(x, θ)

p(x, θ)

)

i=1,··· ,d

.

The maximum likelihood estimator θ∗ of the parameter θ, given a set of n observations x1, · · · , xn, is a
solution of

∑n
j=1

J(xj , θ) = 0. However if the density does not exist or it is not known in an analytical
form, this method cannot be used. Let us denote by Lk a linear space generated by set of functions
{1, ϕ1(x), · · · , ϕk(x)} on (X ,M). We assume we know the functionals of our distribution, namely

Eθϕi(X) = πi(θ), i = 0, . . . , k,

Eθϕi(X)ϕj(X) = πij(θ), i, j = 0, . . . , k.

Instead of the function J we define a new function Ĵ(x, θ) as a projection of J onto the space Lk. Then

Ĵ has to take the following form
Ĵ(x, θ) = c(θ)ϕ(x),

where ϕ(x) =
(
ϕj(x), j = 0, . . . , k

)
, c(θ) =

(
cij(θ), i = 1, . . . , d, j = 0, · · · , k

)
.

Since Ĵ is a projection of J onto Lk, it has to hold

Eθ

(
Ji(X, θ)− Ĵi(X, θ)

)
ϕj(x) = 0, i = 1, . . . , d; j = 0, . . . , k.

From this it follows that it has to hold

∂πj

∂θi
(θ) =

k∑

m=0

cim(θ)πmj(θ), i = 1, . . . , d; j = 0, . . . , k.
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If we use a matrix notation, ∇π(θ) = c(θ)Π(θ). Hence if the inverse of Π(θ) exists, then we are able

to compute the matrix c(θ) = ∇π(θ) (Π(θ))
−1

. Now the M-estimator θ∗ of the parameter θ, given n
observations x1, . . . , xn, is the solution of

n∑

k=1

Ĵ(xk, θ) = 0 or

n∑

m=1

k∑

j=0

cij(θ)ϕj(xm) = 0, for i = 1, . . . , d.

The question that arises with this method is the choice of functions ϕ. One possibility is as follows.
Choose k ∈ N and then z1, . . . , zk ∈ Z and define ϕi(x) = zxi for i = 1, . . . , k. Then the functionals
πi(θ) = Eθ(z

X
i ) = P(zi), where P is the probability generating function of our distribution. A wise

choice of k and zi’s is such that the variance of the resulting estimator is minimal.

4 Simulation from discrete stable family

The simulation from positive discrete stable distribution uses the stochastic representation emphasized
by [2] stating that

PDS (γ, λ)
d
= P

(
λ1/γ

S (γ, 1, σ, 0)
)
,

where P(λ) is Poisson r.v. with parameter λ, S (α, β, σ, µ) is stable r.v. with index of stability α,

skewness β, scale σ and location µ, and σ = (cos(γπ/2))
1/γ

.

For simulation from discrete stable distribution we use the fact that

DS (γ, λ1, λ2)
d
= PDS (γ, λ1)− PDS (γ, λ2).

Symmetric discrete stable distribution have a similar stochastic representation as the positive case.

Theorem 1. A symmetric discrete stable random variable SDS (γ, λ) is distributed as a compound Pois-

son random variable Y with intensity λ1/γS (γ, 1, σ, 0), jumps taking values ±1 with the same probability

and σ = (cos(γπ/2))
1/γ

.

Proof. The Laplace transform of a random variable S (γ, 1, σ, 0) is E exp(−uS (γ, 1, σ, 0)) = exp(−uγ).
The characteristic function of a compound Poisson variable with intensity λ and jumps taking values ±1
with the same probability is exp(−λ(1 − 1/2(eit + e−it))). Then it follows easily that the characteristic
function of the random variable Y is

E
[
eitY

]
= E exp

{
−λ1/γ

S (γ, 1, σ, 0)

(
1−

1

2

(
eit + e−it

))}
= exp

{
−λ

(
1−

1

2

(
eit + e−it

))γ}
.

And in this we recognize characteristic function of SDS (γ, λ).

This representation gives us a useful tool for simulation from symmetric discrete stable distribution
since stable and compound Poisson random variable may be easily generated.

5 Simulation study

In this section we will compare the performance of the two methods, ECF and AML, on simulated
data. We simulate samples from positive discrete stable, symmetric discrete stable and discrete stable
distributions with different values of parameters. The results are in Table 1. We can see that the AML
method is better for estimating the index of stability γ, however the performance of the ECF method is
better with the scale parameter λ. This is evident especially in the DS case, where the ECF method
gives a very biased estimate of γ.
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PDS (γ, λ) (1, 0.5) (0.8, 2) (0.5, 4) (0.2, 1)

Method ECF (1.0044, 0.5011) (0.8052, 2.0220) (0.4997, 3.9903) (0.2052, 1.0098)

AML (1.0000, 0.4999 (0.8043, 2.0242) (0.4998, 3.9725) (0.2050, 1.0093)

SDS (γ, λ) (1, 0.5) (0.8, 2) (0.5, 4) (0.2, 1)

Method ECF (1.016, 0.4995) (0.7886, 2.0389) (0.4968, 4.0751) (0.2041, 0.9960)

AML (1.000, 0.4972) (0.8054, 2.0810) (0.4977, 4.0823) (0.1997, 0.9887)

DS (γ, λ1, λ2) (1, 1, 2) (0.5, 3, 0.5) (0.3, 1, 1)

Method ECF (0.499, 0.981, 1.965) (0.246, 2.934, 0.467) (0.151, 0.987, 1.027)

AML (1.000, 0.856, 1.876) (0.492, 2.935, 0.477) (0.299, 1.000, 1.004)

Table 1: Estimated parameters of PDS , SDS and DS distribution from simulated data

6 Empirical application to market data

As we mentioned in the introduction, one of the motivation for studying discrete stable distributions is
an effort to have a more appropriate tool for modeling discrete financial returns. In this section we take
a look at real data and show that discrete stable distributions are able to capture the nature of the data
really well. We work with Bund futures prices (i.e. futures on German government bonds with maturity
8.5 to 10.5 years) from May 2010 and we consider intraday returns in ticks over different time periods
(30 seconds, 1 minute, 2 minutes, 5 minutes, 15 minutes, 30 minutes, 1 hour). Such short returns are of
interest for example for market makers and high frequency trading systems. The estimated parameters of
the SDS and DS distribution by the AML method are displayed in Table 2. It is interesting to notice
that the returns over different periods keep the same index of stability and the scale parameter changes,
what suggest that the data have the stability property.

SDS period 10 s 30 s 1 min 2 min

Method AML (0.888, 0.760) (0.852, 1.552) (0.834, 2.495) (0.854, 4.551)

SDS period 5 min 15 min 30 min 1 hour

Method AML (0.836, 8.863) (0.796, 16.303) (0.779, 25.946) (0.764, 40.083)

DS period 10 s 30 s 1 min 2 min

Method AML (0.989, 0.913, 0.656) (0.955, 0.816, 0.808) (0.959, 1.414, 1.393) (0.968, 2.577, 2.515)

DS period 5 min 15 min 30 min 1 hour

Method AML (0.928, 3.445, 3.401) (0.864, 4.112, 4.057) (0.816, 4.695, 4.414) (0.777, 5.199, 4.679)

Table 2: Estimated parameters of SDS (γ, λ) and DS (γ, λ1, λ2) from real data

The quality of the fit of the empirical data with symmetric discrete stable, discrete stable and stable
distribution is displayed at Figure 1. The mean square error of the fit with SDS distribution is 1.4e-5,
for DS is 1.6e-5 and with S is 3.0e-5.
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