
The use of the genetic algorithm for the upper bound  

calculation of the vehicle assignment problem 
Ľubomír Toman1 

Abstract. Evacuation is often used mean which serves to protect the population in 
case of emergency. In terms of operation research, the evacuation vehicle assign-
ment problem (VAP) comprises the key part of the evacuation plan design problem. 
VAP represents nonlinear problem. This problem is solved by iterative method 
which is commonly used in fuzzy optimization to handle a nonlinearity model. With 
using this method in VAP, we fix the total evacuation time in order to obtain re-
duced vehicle assignment problem (RVAP) model. RVAP represents the hard com-
binatorial problem, which is computationally demanding. The branch and bound 
method is used for solving RVAP. The efficiency of this method is determined, 
among other things, by the method which serves to obtain the upper bound of the 
optimal solution. In this paper, we propose the use of the genetic algorithm to obtain 
the upper bound instead of the simply rounding heuristic. Numerical experiments 
were performed and the results draw the comparison between both of methods and 
illustrate the effectiveness/ineffectiveness of the proposed method which serves to 
obtain the upper bound of the optimal RVAP solution. 
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1 Introduction 

Evacuation is a mean which serves for efficient protection of human lives and health. It is more common than 
many people realize. Hundreds of times each year, transportation and industrial accidents release harmful sub-
stances, forcing thousands of people to leave their homes [2]. The natural disasters are reasons which force peo-
ple to be evacuated as well. 

Evacuation belongs to the operational control of public service systems. We need to have an evacuation plan 
for efficient perform of evacuation. This plan allows us to evacuate in minimal time by vehicles people from 
endangered dwelling places to the safety places which let us named refuges. The target in evacuation plan design 
is to determine the route for each vehicle used in evacuation in order to every endangered inhabitant is evacuated 
to some refuge in minimal time. Total evacuation time is a time interval which starts when the vehicles depart 
from fleets and which stops when each inhabitant is evacuated into some refuge. 

The evacuation plan design problem consists of following phases. In the first phase, it must be determined 
possible sets of refuges, fleets and endangered dwelling places for a particular emergency. Second phase divides 
endangered dwelling places into smaller part which have lesser number of inhabitants. The parts, which can be 
evacuated independently, are subsequently assigned to the refuges [5]. Let us name these parts as municipalities. 
Final phase of evacuation plan design problem consist in the route determination for each vehicle which is used 
for evacuation. 

2 Vehicle assignment problem 

After the first and second phase of evacuation plan design problem is done, we have input data for final phase 
and can formulate the vehicle assignment problem (VAP) [8]. 

There exists a set of municipalities J which are endangered by some threat. Each municipality j∈J has bj in-
habitants who must be evacuated to the predetermined refuge. The municipality is pre-assigned to the refuge in 
advance. The set I is the set of homogenous fleets. Each fleet i∈I has Ni vehicles with the same capacity. This 
capacity is given by a number of people who can be transported in this vehicle simultaneously. The target of the 
VAP is to assign appropriate number of vehicles from the fleets to the municipalities so that the evacuation can 
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be performed in minimal time. Moreover, we assume that each vehicle can be assigned to one municipality at 
most. Considering this presumption, when the vehicle is assigned, the route of this vehicle is set as well. 

2.1 Iterative method 

The target of the VAP is to assign appropriate number of vehicles from the fleets to the municipalities so that the 
evacuation can be performed in minimal time. This problem is hard to solve. The results [3], [6] shows that bet-
ter way to solve VAP is to use iterative method where in each iteration the reduced VAP (RVAP) is solved. The 
target of the RVAP is to assign appropriate number of vehicles from the fleets to the municipalities so that the 
evacuation can be performed in the predetermined time which is denoted with symbol Tmax. RVAP is a decision 
problem. We are only interested in whether the feasible solution exists or not. If we are able to perform evacua-
tion into the given time Tmax so we decrease this time which represents the upper bound of the time of the opti-
mal VAP solution and repeatedly solve the problem with the new value of Tmax. If we are not able to perform 
evacuation in the given time then the time Tmax +1 represents the lower bound of the time of the optimal VAP 
solution. The resultant solution is that feasible solution which was obtained for the lowest time Tmax. 

2.2 Reduced vehicle assignment problem 

The reduced vehicle assignment problem is assignment problem where we try to assign appropriate number of 
vehicles from the fleets to the municipalities so that the evacuation can be performed in the predetermined time. 
Let the symbol qij denotes the number of vehicles from fleet i assigned for evacuation of the municipality j. 
Based on the predetermined time Tmax and the travel times among fleets, municipalities and refuges we can cal-
culate the values of coefficients aij for each couple i, j where i∈I, j∈J. Such coefficient aij represents the evacua-
tion capacity, i.e., the number of people who can be evacuated from the municipality j by one vehicle from the 
fleet i into the time Tmax. If aij has positive value then the vehicle from the fleet i can be used for evacuation of 
the municipality j, i.e. the municipality j is reachable from the fleet i in the time Tmax. Let the symbol J(i) denotes 
the set of municipalities j∈J which are reachable from the fleet i and the symbol I(j) denotes the set of fleets i∈I 
which the municipality j is reachable from. The target of decision RVAP is to find a feasible solution which 
satisfies the constraints (1)-(3) or to prove that such solution does not exist. 
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The constraints (1) ensure that we use for evacuation only vehicles that the fleets contain. The constraints (2) 
ensure to every inhabitant from every municipality is evacuated. The Figure 1 shows the graphic model of 
RVAP. 

 

Figure 1 The graphic model of RVAP 
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3 Branch and bound method 

RVAP represents hard combinatorial optimization problem. In this problem we are interested only if some solu-
tion exists which holds the constraints (1)-(3). This decision problem is transformed to the minimization one 
[10]. This minimization problem is solved by branch and bound (BB) method. In order to obtain the particular 
algorithm of the BB method the following parts must be set [4]: 
1. searching tree scheme 
2. way of branching 
3. method for the lower bound calculation 
4. method for the upper bound calculation 

Efficiency of the BB method depends not only on the particular used parts but on the right combination of 
the used parts. In this paper we put emphasis on the methods for the upper bound calculation of RVAP. In the 
original approach the special rounding heuristic was used for this purpose. We propose to incorporate this heuris-
tics into the genetic algorithm (GA) in order to obtain better results. 

3.1 Rounding heuristics 

In the original approach the special rounding heuristic is used for the upper bound calculation of RVAP. This 
heuristics uses the optimal solution of the LP relaxed minimization RVAP (or also the feasible solution of LP 
relaxed (1)-(3)) to obtain (whether feasible or infeasible) integer solution. In such LP relaxed solution every 
municipality j∈J is satisfied. This heuristics works in two steps. 

First step: For each pair i, j, where aij > 0 and the variable qij has noninteger value, round down this value if 
the municipality j remains satisfied. Otherwise, round up this value if the fleet i has enough vehicles. Otherwise, 
round down this value even if the municipality j becomes unsatisfied. Integer solution becomes temporarily 
infeasible. Note that if the value of variable qij is rounded down, we spare vehicles in the fleet i but decrease 
satisfaction of the municipality j and vice versa. 

In the second step, we identify the unsatisfied municipalities and try to satisfy them with using spared vehi-
cles from fleets. As first, we try to satisfy such municipality j where the value I(j) is minimal. A feasible solution 
of (1)-(3) exists, if every municipality from the set J is satisfied after this procedure. 

3.2 Genetic algorithm 

The special rounding heuristics, which was initiated in 3.1, works quickly and therefore it is available to use this 
heuristics as a part of the BB method, where big number of the searching tree nodes must be processed. Efficien-
cy of this heuristics depends on the order of processing the pairs i and j (i.e., on the order which the variables qij 
are rounded in). Unfortunately, we are not able to predetermine which order will lead to the best results. There-
fore, it may happen that the potential of the heuristics won’t be used. 

We try to eliminate this disadvantage by the use of the genetic algorithm [12]. We use one of the features of 
the GA which allows distinguishing the genotype and the phenotype [7]. In our case, the genotype (or chromo-
some) includes the order which the couples i, j are processed in (i.e., the order which the variables qij are rounded 
in). The gene is the subscript of the particular fleet or municipality. The genotype consists of a fleet part and 
municipality part as the Figure 2 shows. The fleet part contains the order which the fleets i∈I are processed in. 
Analogically, the municipality part contains the order which the municipalities j∈J are processed in. 

 

Figure 2 Genotype: (a) fleet part and (b) municipality part 

The genotype on the Figure 2 means that the rounding heuristics will round the values of the variables qij for 
these couples (i, j): (1, 4), (1, 2), (1, 1), (1, 3), (3, 4), (3, 2), … , (2, 1), and (2,3) respectively. Both of the geno-
type parts (the fleet and municipality part) have the same structure and they are processed in the same way. But 
each part is processed individually, e.g., to crossover genotype, we separately crossover parents fleet part and 
separately parents municipality part and consecutively join these offspring parts to create an offspring. In the 
following, we confine ourselves only to the fleet part of the genotype. Note that the same operations are applica-
ble to the municipality part as well. 

Let us assume the set I has m fleets. The fleet part contains permutation 〈π1, …, πm〉 of fleet’s subscripts 
1, … , m. This permutation represents the order, which the fleets are processed in, in rounding process. We used 
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the partial mapped crossover (PMX) [7] scheme for crossover of parents. This crossover scheme holds a permu-
tations of the subscripts 1, … , m in the created offsprings. The used operation of mutation changes several times 
positions of two randomly selected genes of the genotype part. The number of changes is a method parameter. In 
this approach the strategy of crossover-AND-mutation is used. The crossover of parents is carried out if the 
pseudorandomly generated number r∈〈0; 1〉 is less then the crossover rate χ∈〈0; 1〉. The mutation of offsprings 
is carried out if the pseudorandomly generated number r∈〈0; 1〉 is less then the mutation rate µ∈〈0; 1〉. The crea-
tion of the offspring genotype consists of the separate crossover and mutation of the fleet parent genotype and 
municipality parent genotype. 

To use the selection it is need to evaluate the fitness of the individuals. When the rounding process of values 
qij is done, there are only two cases. First, the optimal solution of minimization RVAP was found. In the second 
case some of the municipalities are not fully satisfied, i.e., some portion of inhabitants was not evacuated from 
these municipalities. Number of such inhabitants makes the fitness of individuals. The lesser this number is, the 
better the fitness is. The rounding heuristics is the transformation which is used for genotype-phenotype map-
ping. 

For the selection of individuals for parenthood we used roulette-wheel selection with ranking (RWS+R). One 
of the best advantages of the selection with ranking is a simple computation which can be done in O(1) time [7]. 
We sort the individuals in ascending order of fitness. We have sorted sequence of individual x1, … , xn where n 
is the number of individuals. The probability of selecting the individual xk is p(k) = k/N, where N is computed 
according to (4). When the pseudorandom number r∈〈0; 1〉 is generated such kth individuals is selected for 
parenthood where (5) holds for the minimal k. Then the number k can be easily and quickly computed according 
to (6). 
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After the selection of individuals for parenthood, crossover, mutation and evaluating process is done, the bet-
ter offspring is inserted into the set of offsprings. When the set of offsprings is filled, we select the new popula-
tion according the “α +µ” strategy which are commonly used in the evolution strategy community [12]. We 
select into the new population individuals from both of parent and offspring sets. Moreover, we use elitism strat-
egy [12] as well, where we put the best individual into the new population in advance. As the termination criteri-
on we used predetermined number of population exchanges. 

It is clear, that GA contains many control parameters which affect its efficiency. It is needed to suitably set 
these parameters. 

4 Numerical experiments 

We implemented and tested the suggested GA to obtain the upper bound of RVAP. To verify the suggested 
method we used twenty benchmarks of evacuation plan design problem. These instances were created on the 
transportation network of Slovak Republic. We performed experiments on a personal computer equipped with 
Intel Pentium D with parameters 3 GHz CPU and 1 GB RAM. In the first series we used the special rounding 
heuristics only to obtain the upper bound of RVAP in BB method. In the tables this heuristic is denoted with 
symbol RH (Rounding Heuristics). In the second series we incorporate this heuristics into GA and GA was used 
to obtain the upper bound. In the tables GA is denoted with symbol GA. Since we used PMX scheme for crosso-
ver, we set the number of crossover points to value of two. When the mutation is carried out, only one change of 
genes are performed. 

During second series of experiments, we set the crossover rate χ-and mutation rate µ to some different val-
ues. Beasley et al. Beasley et al. [1] recommends carrying out the crossover with probability about 80-95 % and 
the mutation with probability about 0.5-1 %. According to this, we successively set χ to values of 0.8, 0.85, 0.9, 
and 0.95 and µ to values of 0.005, 0.01, 0.015, and 0.02. Number of population (NoP) which served as termina-
tion criterion was successively set to values of 20, 40, and 60. Number of individuals (NoI) in each population 
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was successively set to values of 20, 40, and 60 as well. Each combination of these parameters (χ, µ, NoP, and 
NoI) values was used in the second series. The experiments were evaluated with Data Precedence Analysis 
(DPA) method [9]. The best parameters setting (PS) was χ = 0.85, µ = 0.005, NoP = 20, and NoI = 20. The val-
ues of χ and µ correspond to recommended values. But even with this best PS of GA we obtained worse results 
than with RH. The Table 1 shows only benchmarks where the different evacuation time (T) was achieved for RH 
and GA. Only for the benchmark 11 and 15 were achieved better results when GA was used. 
 

Benchmarks 02 03 04 05 06 07 09 11 13 15 16 19 

T 
[min] 

RH 278 69 129 61 95 150 92 128 124 457 220 61 

GA 284 70 131 65 97 160 94 127 125 455 223 62 

Table 1 Result of RH and GA 

Therefore, we decided to perform new experiments. We fixed χ and µ to values of 0.85 and 0.005 respective-
ly and tried to explore efficiency of GA for wider range of the NoP and NoI parameters. We set successively 
NoP to values 10, 20, 50, and 100 and NoI to values 10, 20, 50, 100, and 150. We again solved benchmarks for 
every combination of NoP and NoI. Unambiguously, the best PS was for NoP = 10 and NoI = 10. These results 
invoked any suspicion, because the expectation was that the more the values of NoP and NoI are, the better re-
sults we should obtain. But the experiments affirmed the opposite. 

So we decided to explore the efficiency for lesser values of NoP and NoI. We set successively NoP to values 
1, 5, 10, and 15 and NoI to values 2, 5, 10, 15, and 20 and again solved the benchmarks for every PS combina-
tion. The PS, where NoP = 1 and NoI = 2, is unambiguously the best PS and almost the same results were 
achieved with this PS of GA as with RH. The second-best combinations of PS are shown in the Table 2 with the 
best PS together. 
 

Parameters 
setting of GA 

Best Second-best 

NoP 1 1 1 5 

NoI 2 5 15 2 

Table 2 Parameters setting of GA 

The results show that the lesser the values of chosen parameters were, the better results we obtained. Based 
on these results we can conclude that it is not convenient to embed GA as a part of the branch and bound meth-
od. Although, GA is efficient at solving many problems, its power is based on the evolution process whereby the 
individuals, which represents problem solution, are bred. And this evolution process takes some portion of time 
(numbers of population exchanges). Moreover, population must contain sufficient number of individuals which 
depends on the size of problem. These factors influence the computational time which is needed for efficient 
performance of GA. But the methods which are used as a part of BB method have to work quickly, because the 
searching tree has big amount of nodes which have to be processed. For this reason we can not assign sufficient 
amount of resources (e.g. set NoP and NoI to sufficient high values) in order to obtain good results. On the con-
trary, for small values of NoP and NoI we are not able to reach good results and moreover the GA only slows the 
computational process. For this reason, lesser number of nodes in searching tree is processed for the same time 
with comparison with the case when GA is not used as a part of the BB method. In the case, when the searching 
process of the branch and bound method is prematurely terminated after the predetermined computational time 
expires, the searching process does not reach the branch (area in a searching tree) where the optimal solution 
would be found. Therefore we do not recommend embedding GA as a part of the branch and bound method. 

5 Conclusion 

In this paper we dealt with the evacuation plan design problem especially with the vehicle assignment problem 
which comprises its important part. Special iterative process is used to solve this problem where in each iteration 
the reduced problem is solved by the branch and bound method. We introduced the special rounding heuristics 
which is used to obtain the upper bound of the reduced problem in the original approach. We proposed to embed 
this heuristics within the genetic algorithm in order to obtain better results. The suggested method was experi-
mentally verified by numerical experiments. The results show that it is not convenient to embed GA as a part of 
the branch and bound method because the power of GA is based on the evolution process which requires some 
resources (computation time). Quite the contrary, the methods used as a part of the branch and bound method 
have to work quickly. 
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