
Spatial statistics in the analysis  
of county budget incomes in Poland  

with the R CRAN 
Alicja Wolny-Dominiak1, Katarzyna Zeug-Żebro2 

Abstract. Since Waldo Tobler [13] formulated the first law of geography, which 
says that everything is related, but near objects are more related than distant ones, 
spatial modeling has become an important research area. The methods which were 
developed proved to be excellent tools which can also be used in regional analysis. 
The most common are measures of spatial autocorrelations, which show the 
dependence of variables in respect of spatial localization. Spatial correlation allows 
to determine that intensification of a given phenomenon is more perceivable in 
neighboring units than in units distant from each other. The main objective of this 
paper is to present spatial dependences analysis using measures of global and local 
spatial autocorrelation with a free software environment R CRAN. The analysis is 
carried out using the real data set of budget incomes of counties in Poland. 
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1 Introduction  
Methods of spatial statistics are used to identify spatial patterns and spatial dependency. Testing occurrence of 
spatial dependency boils down to verify the hypothesis of the existence of spatial autocorrelation in the data 
spatially localized. The evaluation of spatial autocorrelation requires the knowledge of the extent and specificity 
of spatial diversity, i.e. diversity of characteristics of individual sites and geographic regions. 

 Until recently, the rare use of spatial autocorrelation measures in practice resulted from complex and time-
consuming calculation procedures. For some time, however, there has been a rapid development in computer 
software that allows to carry out research (often very complex)  in the field of spatial statistics and econometrics. 
One of such programs is the R CRAN, within which packages {spdep} [4] and  {maptools}, used to analyze 
regional and spatial data dependences, are developed. R CRAN can successfully replace the familiar, expensive 
software because it is multifunctional and available for free. 

 The objective of this paper is to study spatial dependency using of global and local spatial autocorrelation 
measures. All calculations and maps were made in the statistical program R CRAN based on the data relating to 
the budget incomes of counties in Poland in 2010. The data was obtained from the Local Data Bank of the 
Central Statistical Office (www.stat.gov.pl). 

2 Spatial statistics 
There are two types of indicators of spatial associations (ISA): global and local measures of autocorrelation. The 
global autocorrelation follows from the existence of correlations across the spatial unit test. The local measure 
shows a spatial dependency the variable with neighboring units in a particular location. The most commonly 
used global and local measures are: the Moran statistics I  [11] and  the Geary statistics C  [6], [1]. The spatial 
autocorrelation occurs when a certain phenomenon in a single spatial unit alters the probability of occurrence of 
this phenomenon in the neighboring units [3]. In general, the positive spatial autocorrelation occurs when we 
observe the accumulation, in terms of the location, high or low values of observed variables. In the case of 
negative autocorrelation, high values adjacent to low, and low to high, creating a kind of checkerboard [12]. The 
lack of spatial autocorrelation means the spatial randomness, i.e. the high and low values of observed variables 
are distributed independently. 
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2.1 Selected global statistics 

The Moran statistics is one of the most widely used measures in the study of spatial autocorrelation. The Global 
Moran’s I  is defined as follows: 
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where:  ix , jx  are the values of variables in spatial unit i and j, x  is the mean of variable for all units, n is the 

total number of spatial units that are included in the study, 0S  is the sum of all elements of a spatial weight 

matrix, z is a column vector of elements xxz ii −= , W is the spatial weight matrix degree n, defining the 

structure of the neighborhood, ijw  is an element of  weights matrix W [10]. This statistic takes values ranging 

from ]1,1[− :  positive, when tested objects are similar, negative, when there is no similarity between them and 

approximately equal to 0 for a random distribution of objects.  

Cliff and Ord [5] have shown that the distribution of Moran statistics is asymptotically normal. Thus, the 
statistical significance of spatial autocorrelation can be verified using normalized statistics : ( )1,0~ NI S : 
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where: ( )IE  is the expected value of Moran’s and ( )IVar  is its variance:     
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If the Moran statistic has a value ( ) 0,1 1 ≈−−≈ − SInI  it indicates a random spatial pattern. However, when 

( ) 0,1 1 >−−> − SInI  the spatial autocorrelations is positive, and if  ( ) 0,1 1 <−−< − SInI , the spatial 

autocorrelations is negative.  

Another global measure of  spatial autocorrelation  is Global Geary’s C. This statistic, is given by  
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where all elements of the formula are defined as in statistic I. The above formula shows that the Geary measure 
can be expressed by the Moran statistic [8]. Although Moran and Geary measures give similar results, the Moran 
statistic is more effective. This is due to greater sensitivity of the variance of the Geary statistic to the 
distribution of sample. Values of this statistic can be impaired when the matrix of weights is asymmetrical. In 
order to verify the hypothesis of no spatial correlation, the Geary statistic can be standardized: 
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where: ( )CE  is the expected value of  Geary’s and ( )CVar  is its variance:  
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The value of Global Geary’s C is always positive and  takes values ranging from [ ]2,0 . In the case, of:  

1< C < 2, 0>SC , the spatial autocorrelation is negative; when 0< C <1, 0<SC , the spatial autocorrelation is 

positive; finally, when 0,1 ≈≈ SCC , there is no spatial autocorrelation. 
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2.2 Selected local statistics 

We can use local indicators of spatial association (LISA), a Local Moran statistics and a Local Geary statistics, 
to identify spatial systems. The Local Moran determines clusters of spatial units and studies whether the unit is 
surrounded by neighboring units with similar or different values of the variable studied in relation to the random 
distribution of these values in the studied space [10].  

In the case of non-standardized values of the variable and row-standardized spatial weight matrix 
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where all elements of the formula are defined as in the Global  Moran’s I.  The standardized Local Moran’s SiI is 

used to test the statistical significance of local spatial autocorrelation [1]:  
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where: ( )iIE  is the expected value of  the Local Moran and ( )iIVar  is its variance 

( )
1

E 1

−
−=
∑

=

n

w

I

n

j
ij

i  i ( )
( ) ( )

( )( )

22

121

22

1
Var

















−

−
−

−−

−
+

−

−
=

∑∑∑∑
≠≠ ≠≠

n

w

nn

wwnk

n

wkn

I
ji

ij
il ihi

ihil
ji

ij

i    (10) 

where ( ) ( )
2

24 11







 −






 −= ∑∑
i

i
i

i xx
n

xx
n

k . 

When S

iI is negative, the spatial autocorrelation is negative too, i.e.  when the object is surrounded by spatial 

units with significantly different values of the studied variable. The spatial autocorrelation is positive when  
0>S

iI , the object is surrounded by similar neighboring units. 

According to Anselin [1] a Local Geary statistics for an observation i may be defined as 
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where xxz ii −= , xxz jj −=  and ijw  are the elements of the row-standardized binary symmetric spatial 

weight matrix W. The test statistic for S

iC is 
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where: ( )iIE  is the expected value of  the Local Moran and ( )iIVar  is its variance 
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the significant testing on local spatial association can be conducted based on the calculated test statistics above. 
The iC  statistic is interpreted in the same way as the Local Moran. 

3 ISA for incomes of counties in Poland with R 
In the empirical example, we analyzed global and local indicators of spatial associations (ISA) for incomes of 
counties in Poland in 2010 year. For all computations and maps we used the free software environment R. We 
started with the calculation of the spatial weight matrix for 376 counties in Poland which measures spatial links 
between objects. This matrix is necessary to analyze the neighborhood. Based on the weight matrix we computed 
the neighborhood matrix according to adjacency criteria. The neighborhood map of counties is as follows: 
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Figure 1 Distribution of the number of links for the counties and the neighborhood matrix for Poland 

The number of nonzero links in all counties is equal to 1996 and the average number of links for one county 
is 5.31. As we can see there are 31 least connected counties with 1 link and 2 most connected counties with  
11 links. Over 23% of counties have five neighbors. 

R code: 
> map<-readShapePoly("C:/DANE/POL/POL_adm2.shp") 
> map.nb<- poly2nb(as(map,"SpatialPolygons"))  
> map.listw<-nb2listw(map.nb, style="W")  
> coord=coordinates(map) 
> plot(map.nb,coord, add=TRUE) 

Then we calculated Moran's I global statistics using the test under randomization and 0615.0=I with 
expectation 0027.0)( −=IE , variance 0005.0)( =IVar .  The small p-value at 0.0025 shows significance of the 

statistics. The value of Moran I is close to zero, which indicates no spatial autocorrelation. This means that there 
is no similarity between neighboring counties in terms of incomes. 

R code: 
> moran<-moran.test(data$Income, map.listw) 
> moran.plot((data$Income-mean(data$Income))/sd(data$Income),map.listw, xlab="Income budget of counties 
in Poland ", ylab="Spatial lags for Income") 

 

Figure 2 Scatter plot for the Moran global statistic 

 
We also computed global Geary's statistics using the test under randomization. The results are similar to 

Global Moran statistics except for a p-value, which is equal to 0.5062. The value 0031.1=C  is near one which 
indicates no spatial autocorrelation, but p-value proves that Global Geary’s statistics is insignificant. 
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 In order to analyze the spatial autocorrelation in every county we calculated Local Moran statistics and Local 
Geary statistics. First of all, we tested significance of both statistics. The results are shown on the following 
maps: 
 
 

 

 

 

 

 

 

 

 

Figure 3 Counties with significant Local Geary and Local Moran statistics 

The Local Moran is significant only for 8 counties: “Powiat m. Krakow”, “Powiat m. Poznań”, Powiat 
piaseczynski”, “Powiat pruszkowski”, “Powiat m. Warszawa”, „Powiat wołomiński”, „Powiat m. Gdańsk”, 
„Powiat m. Gdynia”. For all these counties Local Moran is significantly positive with the p-value below 0.05 
which means that those counties are surrounded by objects with similar value of incomes, but we can-not say 
which counties are rich or poor. The Local Geary is significant for a greater number of counties against Local 
Moran. The interpretation is similar. 

R code: 
> moran.local<-localmoran(data$Income, map.listw) 
> sig<-ifelse(moran.local[,5]<=0.05,"*"," insig ") 
> break=c(0.0000000000000001, 0.05, 0.95, 0.999999999999999999) 
> colors=cm.colors(1:3, alpha=1) 
> moran.local.df=as.data.frame(moran.local) 
> plot(map,col=colors[findInterval(moran.local.df[,5],break)]) 
> legend("bottomleft", legend=c("significant Local Moran"), fill=colors, bty="n") 
> Gi.local<-localG(data$Income, map.listw) 
> Gi.local.df<-as.data.frame(as.vector(Gi.local)) 
> sig<-ifelse(as.data.frame(as.vector(Gi.local))<=-3.083|as.data.frame(as.vector(Gi.local))<=3.083,"*"," insig ") 
> colors=cm.colors(1:3, alpha=1) 
> plot(map,col=colors[findInterval(Gi.local.df[,5],break)]) 
> legend("bottomleft", legend=c("significant Local Geary"), fill=colors, bty="n") 

Based on Local Moran, we identified spatial regimes which show counties and neighbors with high and low 
values of incomes.  

 

Figure 4 Spatial regimes 
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The classification of spatial regimes is as follows: 
(i) I quarter HH – Cluster “ I have high budget incomes and so do my neighbors” 
(ii)  II quarter LH – Outlier “ I have low budget incomes among neighbors with high incomes” 
(iii)  III quarter LL – Cluster “ I have low budget incomes and so do my neighbors” 
(iv) IV quarter HL – Outlier “ I have high budget incomes among neighbors with low incomes” 

R code 
> Z<-(dane$X15-mean(dane$X15))/sd(dane$X15) 
> lag.Z<-lag.listw(map.listw, Z)  
> q1<-ifelse(Z>0&lag.Z>0,1,0) 
> q2<-ifelse(Z>0&lag.Z<0,2,0) 
> q3<-ifelse(Z<0&lag.Z>0,3,0) 
> q4<-ifelse(Z<0&lag.Z>0,4,0) 
> q<-q1+q2+q3+q4 
> q.data<-as.data.frame(q) 
> break=c(1,2,3,4) 
> colors=rev(heat.colors(4)) 
> plot(map,col=colors[findInterval(q.data$q,break)], forcefill=FALSE) 
> legend("bottomleft", legend=c("I quarter -HH", "II quarter - LH", "III quarter -LL", "IV quarter - HL"), 
fill=colors, bty="n") 

4 Conclusions 
Spatial methods are used increasingly frequently in the analysis of economic processes. One of the reason is the 
fact that spatial autocorrelation  local and global measures, informing about the type and strength of spatial 
dependency, allow on: fuller use of the measure; to determine the relationship between reference entities; to 
define spatial structures [9]. Additionally, there are rapid developments in software that offers computational 
procedures in the field of spatial statistics and econometrics. Their effects can be observed, inter alia, in the R 
CRAN, which is useful for all professionals and scientists dealing with the analysis of spatial data. 
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