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Abstract. Conditional Value at Risk (CVaR) has been proposed as an al-
ternative, almost coherent, risk measure to Value at Risk (VaR), as it con-
siders expected loss beyond VaR. This paper deals with estimating Value at 
Risk and conditional Value at Risk under the assumption of mixture normal 
distribution. We apply mixture normal distribution by assuming that the 
economy is in various phases of the business cycle. We determinate the 
both risk measures for market risk, daily returns of popular indices (DAX, 
CAC, Nikkei and FTSE) over ten years. In the first part, we describe meth-
odology VaR and CVaR and techniques of estimating parameters of proba-
bility distributions are presented, i.e. general method of moments and max-
imum likelihood. Finally, we compare all estimates with each other. 
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1 Introduction 

The Value at Risk (VaR) is defined as the maximum potential loss in value of a portfolio due to adverse market 
movements, for a given probability. There is also a possibility to refer to VaR as managing risk methodology 
which is applied widely to modeling credit, operational, market and also insurance risk. Value at Risk is very 
easy concept; its measurement is a very challenging statistical problem. A good introduction to Value at Risk 
methodology is provided by the technical document from [11] or by many follow-up books such as [2], [8], [9], 
[10]. 

Nevertheless, we can find a lot of VaR criticism, for instance [10]. [3] deals with the features of good risk 
measure (called coherent) which is defined by four assumption imposed on the ideal risk measure, i.e. mono-
tonicity, sub-additivity, homogeneity and translational invariance. Value at Risk satisfies all these features only 
in specific case. Specifically, the sub-additivity is violated as far as the portfolio´s profit/loss or portfolio´s return 
cannot be characterized by some elliptical probability distribution; see [4] for more details. In addition, the VaR 
says nothing about the loss behind the VaR. Therefore, other risk measures are preferable such as conditional 
Value at Risk (CVaR) which represents the average of losses exceeding the VaR. 

Moreover, if the VaR and CVaR are estimated analytically, the distribution assumption is needed. Normal 
distribution can be supposed but this assumption results in underestimation of VaR and CVaR due to the exist-
ence of fat tails. In facts, to solve this problem, only two approaches seem to be applicable. One can consider 
Extreme Value Theory (EVT) focused on fitting the tail distribution only which is approximated mostly via 
general Pareto distribution, the other can apply mixture distribution to fit the empirical distribution the most. The 
series of studies are devoted the heavy tails [7], [12]. 

Thus, the aim of paper is estimating Value at Risk and conditional Value at Risk under the assumption of 
mixture normal distribution and normal distribution. To respect the fat tails, we apply normal mixture distribu-
tion.  We highlight in this paper that the VaR and CVaR are highly underestimated in that case. 

The paper is organized as follows. Section 2 is devoted to the description of normal mixture distribution 
and methods of its estimate parameters and general Value at Risk methodology under assumption normal mix-
ture distribution. The VaR and CVaR estimates under normal distribution and mixture probability distribution 
are determined in Section 3 and Section 4 concludes the paper. 
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2 Value at Risk methodology  

In this part, we focus normal mixture distribution and then we describe methods of estimating the parameters of 
the normal mixture distribution, i.e. maximum likelihood estimation (MLE) and method of moments (MM). 
Finally, we characterize shortly Value at Risk and Conditional Value at Risk. 

2.1 Normal mixture distribution 

The financial analysis is based generally on the assumption of normally distributed returns but we know that this 
assumption is not valid. In most financial markets returns are both skewed and leptokurtic. Hence, a number of 
alternatives skewed and leptokurtic distributions have been applied. Suitable alternative to normal distribution is 
a mixture of two or more normal distributions. Normal mixture distribution is described in [6]. 

We can define the mixture distribution like a probability-weighted sum of other distribution functions. For 
instance, in a mixture of two normal distributions, there are two regimes for returns: one where the return has 
mean 1µ and variance 2

1σ and another where the return has mean 2µ  and variance 2

2σ . The parameter π is the 

probability for first regime, so the second regime occurs with probability 1- π . The mixture distribution of just 
two normal densities is defined by  
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where π is the probability associated with the normal component with  mean 1µ and variance 2

1σ . We suppose 

that the expectation of sample is zero for both distribution, so 1µ = 2µ = 0. In this case the variance of the normal 

mixture distribution is just the probability- weighted sum of distribution functions, i.e. 
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The skewness is zero and the kurtosis is given by  
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2.2 Mixture parameter estimation 

The estimation of the mixture parameter can be via two methods: maximum likelihood method and method of 
moments.  

Maximum likelihood estimation is a general method for estimating the parameters of a distribution. This 
method is used extensively because maximum likelihood estimators are consistent. That is, the distribution of the 
estimator converges to the true value of the parameter as the sample size increases. For estimating the parameter 
of mixture distribution via method maximum likelihood is used the EM algorithm. The Expectation maximiza-
tion (EM) algorithm is an efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the 
presence of missing or hidden data. Each iteration of the EM algorithm consists of two processes: The E-step, 
and the M-step. The E-step is the calculation of the expected log likelihood given the current estimates of and 
given some distribution on the values of the latent variable. In the M-step, the likelihood function is maximized 
under the assumption that the missing data are known. EM algorithm is described in [1]. 

As the number of distributions in the mixture increases the probability weight on some of these components 
can become extremely small. However, in finance it is seldom necessary to use more than two or three compo-
nents in the mixture, since financial asset return distributions are seldom so irregular as to have multiple modes. 
In this approach we equate the first few sample moments (one moment for each parameter to be estimated) to the 
corresponding theoretical moments of the normal mixture distribution. The method of moments in general pro-
vides estimators which are consistent but not as efficient as the maximum likelihood ones. If we will be apply 
method of moments for estimate the parameters of a normal mixture distribution we equate to the first four sam-
ple moments by changing the parameters of the normal mixture distribution. The vector of probability weights is 

denoted by ),.....,( 1 m
πππ = where 1

1
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π . The non-central moments are 
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And the mean )(µ , variance ( )2σ , skewness )(τ  and kurtosis )(κ are 
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The characteristics of particular moments are described in various books for example [1]. 

2.3 Value at Risk and Conditional Value at Risk 

Value at Risk is defined as the smallest loss for the predicted level of probability for a given time interval. It is a 
function of two parameters, i.e. the risk horizon and the confidence level. We can also characterize the Value at 
Risk as a one-sided confidence interval of potential loss of portfolio value for a given holding period, which can 
be written: 

    ( ) ( )( ), tF x P X VaR xα α∆= ≤ − = ,           (6) 

where ( )F x  is cumulative distribution function, α  is significance level and t∆  is holding period or risk hori-

zon.  

For normal distribution we can write VaR estimation as 

µσα −−Φ= − )1(1
VaR          (7) 

where Φ is standard normal distribution function, µ  expectation and σ standard deviation. We can determinate 

VaR from the mixture distribution function thus 
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X is normal variable, we know its quartiles. That is, we know everything in the above identity except the mixture 
quantile

α
x .  We can find the mixture quantile using an iterative approximation method such as the goal pro-

gramming and VaR for mixture distribution is
αα

xVaR −= . 

Conditional Value at Risk informs what the losses would exceed this level. Conditional VaR can be generally 
defined in the form of 
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where ( )f x  is density function. CVaR is computed by assuming normal distribution as  

( ) µσαϕα
α

−Φ= −− )(11
CVaR                                                                (10) 

whereϕ and Φ is standard normal density and distribution function, µ expectation and σ standard deviation. We 

can write formula for CVaR by assuming the mixture distribution as  
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3 Determination Value at Risk for mixture distributions 

We will apply Value at Risk for four equities indices (CAC 40, DAX, FTSE 100 and NIKKEI 25). We will esti-
mate VaR and CVaR at 99.9% and 99.5% confidence level over one day risk horizon, because the financial insti-
tutions determinate capital requirement for market risk for confidence level (banks at 99.9% and insurance com-
panies at 99.5% confidence level.) We prefer one day risk horizon because it is different in financial institutions 
(for banks is 10 days and insurance companies 1 year horizon). The period sample is between January 2002 and 
December 2011 and we take the daily log returns for the stock indices over the whole period. The basic numeri-
cal characteristics of individual stock returns, especially the mean, standard deviation, kurtosis, skewness are 
shown in the following table. Histograms of empirical values you can see in Figure 1 – 4.  

 

Variable Mean Volatility Skewness Kurtosis 

CAC 40 -0.0145% 1.5946% 0.0867 5.2427 

DAX 0.0044% 1.6478% 0.0678 4.4742 

FTSE 100 0.0026% 1.3357% -0.1195 6.4006 

NIKKEI -0.0076% 1.5748% -0.4764 7.7677 

Table 1 Moments of equities indices 

 

 

Figure 1 Log returns of CAC   Figure 2 Log returns of DAX 

 

Figure 3 Log returns of FTSE      Figure 4Log returns of NIKKEI 

 

Firstly, we estimate parameters of normal mixture distributions. We apply the method of moment and EM algo-
rithm to fit a mixture of two normal distributions to the daily returns for the four equities indices (CAC 40, 
DAX, FTSE 100 and NIKKEI 25). We can see estimated parameters in Table 2.  

 

  Method of moments  Maximum likelihood 

  CAC 40 DAX FTSE 100 NIKKEI CAC 40 DAX FTSE 100 NIKKEI 

 1µ  0.026% 0.342% -0.214% 0.007% -0.045% 0.038% 0.064% 0.081% 

2µ  0.065% -0.239% 0.082% 0.059% 0.494% -0.074% 0.052% 0.047% 

1σ  2.085% 1.672% 1.559% 1.020% 1.850% 1.907% 1.559% 1.255% 

2σ  0.849% 0.897% 0.188% 2.256% 0.870% 0.830% 0.588% 0.867% 

1π  0.342 0.592 0.723 0.658 0.650 0.230 0.810 0.380 
 2π  0.658 0.408 0.277 0.342 0.350 0.770 0.190 0.620 

Table 2 Estimated parameters of normal mixture distribution 
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We can see differences for various methods of estimate parameters. The highest differences are in parameters 
.1π  Finally, VaR and CVaR were determined under assumption normal mixture distribution and normal distribu-

tion. We use significance levels α  = 0.5% and 0.1% and time horizon one day. For each of the four risk factor 
we use Solver to back out the normal mixture VaR from the equation (8). We calculate VaR model with estimate 
parameters via method of maximum likelihood and method of moments. The results are in the next tables.   

 

VaR model 
 

Normal Mixture 
Normal 

Normal Mixture 
Normal 

MM MLE MM MLE 

Significance 0.1% 0.5% 

CAC 40 7.76% 8.02% 4.91% 4.58% 4.71% 4.09% 
DAX 8.06% 8.32% 5.10% 4.76% 4.64% 4.25% 

FTSE 100 6.53% 6.27% 4.13% 3.86% 3.98% 3.44% 
NIKKEI 7.68% 7.94% 4.86% 4.53% 4.66% 4.05% 

Table 3 The results VaR model  

Value VaR under assumption normal distribution is much significantly lower than VaR under assumption nor-
mal mixture distribution. The value of VaR is so undervalued, which also leads held by the low economic capital 
to cover potential risks. 
 

CVaR model 
  

Normal Mixture 
Normal 

Normal Mixture 
Normal 

MM MLE MM MLE 

Significance 0.1% 0.5% 

CAC 40 6.97% 7.22% 5.39% 6.37% 6.49% 5.68% 
DAX 7.13% 8.71% 5.55% 6.56% 6.68% 5.85% 

FTSE 100 6.08% 6.08% 4.50% 5.32% 5.44% 4.75% 
NIKKEI 6.89% 6.89% 5.31% 6.28% 6.40% 5.61% 

Table 4 The results CVaR model  

The same results we conclude according to the CVaR results. Also in this case, it is obvious that the CVaR esti-
mates are highly underestimated. Thus, the importance of applying normal mixture distribution to quantify the 
risk measure in the form of VaR or CVaR is obvious and we can highly recommend it. 

4 Conclusion 

The paper deals with quantification of risk measure using Value at Risk methodology on market risk for four 
equities indices (CAC 40, DAX, FTSE 100 and NIKKEI 25). Firstly, we characterize normal mixture distribu-
tion and determination VaR and CVaR. Subsequently, we estimated parameters mixture distribution via the 
maximum likelihood method and method of moments. Finally, we determined VaR and CVaR at 99.9% and 
99.5% confidence level over one day risk horizon and we compared estimates of both risk measures on the as-
sumption that normal distribution with estimates under assumption normal mixture distribution. 

We know that asset returns tend to be skewed and heavy tails. Only just normal mixture distribution can 
model heavy tails and we supposed the fat tail of probability distribution and therefore we applied normal mix-
ture distribution. Thus, we do not take fat tails into account it can lead to the very imprecise and very different 
Value at Risk estimates resulting in insufficient capital which should cover the loss. 
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