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Abstract.

Fast food chains have long been setting an example in operations management
e�ciency; however, as we show in the paper, there is still room for improve-
ment. Our case study deals with crew optimization in a particular fast food
restaurant. First, we describe the current practice in crew scheduling�which
is mostly done manually by the employees. Next, we provide two alternative
MILP formulations that can be used to �nd the optimal schedule under the
given criteria; these formulations take into account the speci�c crew structure
of the fast food restaurant (full-time vs. part-time employees, underage tem-
porary jobs etc.), as well as its speci�c criteria. We discuss and compare the
computational tractability of the proposed models for small-scale applications
and comment on solution concepts for large-scale ones. Finally, we evaluate the
restaurant's crew scheduling e�ciency by comparing the quality of the actual
(empiric) schedules to those obtained by MILP.
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1 Introduction

The huge success of fast food giants (such as McDonald's, Burger King or Kentucky Fried Chicken) has
usually been attributed to their exceptional operations e�ciency. Indeed, fast food chains were among
the �rst companies outside the manufacturing industry that utilized modern production management
principles, such as lean production and Just-in-Time (JIT) strategy. Undoubtedly, the sheer idea of a
fast food restaurant logically encompasses some of JIT practices, e.g. short lead times, quick setups and
small-lot production�but many fast food chains did not stop there. For instance, a couple years ago,
McDonald's started using Kanban cards in order to establish a pull production system, and developed a
new type of bun toaster to cut down on production time.

Another source of fast food restaurants' cost e�ciency is the high degree of work standardization.
Among other things, it allows them to hire sta� with minimal training, making temporary jobs at the
restaurant suitable for underage workers (especially students), who have few alternative job opportunities.
As noted in [3], fast food industry exhibits a very high proportion of minimum-wage workers. Moreover,
the presence of many part-time employees and/or temporary jobs increases the �exibility of personnel
schedules; in other words, it creates the opportunity to adjust the amount of manpower at a particular
time to predicted sta� requirements (which reduces potential costs of sta� shortage/overage).

However, as we demonstrate using a case study of a Czech fast food restaurant3, these potential
bene�ts from schedule �exibility are not exploited e�ciently by the fast food restaurants' executives.
The main reason is that, to our knowledge, crew scheduling is mostly done manually4�which both takes
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a long time even for an experienced schedule manager and results in a sub-optimal schedule, since with
more than only a handful of employees it is virtually impossible to �nd the optimal schedule by hand.

In the rest of the paper, we aim to support this claim using the data from our case study. In �2,
we brie�y review existing optimization approaches to crew scheduling. In �3, we present a thorough
description of the crew scheduling problem we dealt with in our case study. As our case study was of a
relatively small scale�the restaurant had 40 employees (full-time, part-time and temporary)�we could
use mixed integer linear programming (MILP) as the optimization vehicle. In �4, we propose two quite
di�erent MILP formulations of the scheduling problem. Both have their pros and cons: one is easier
to implement, the other is more computationally e�cient; we provide a brief discussion of both models'
computational tractability at the end of �4. Finally, in �5, we evaulate the restaurant's crew scheduling
e�ciency by comparing the quality of the actual (empiric) schedules to those obtained by MILP.

2 Optimization approaches to crew scheduling

In general, crew scheduling is the process of creating work timetables for a �rm's sta� that (1) are
feasible/satisfactory for individual employees and (2) e�ciently cover the demand for manpower over the
given time horizon. In all but the simplest cases, �nding a good schedule is a very demanding task,
and many automated decision-support systems have been developed for di�erent application areas, which
mostly come from the transportation, health care, and services industries; an extensive review is given
in [5]. Solutions are typicaly obtained using one of the following techniques:

• Mathematical programming. Most crew scheduling problems can be described as a MILP problem;
however, for large-scale problems and/or problems with complicated constraint structures, MILP
models are not computationally tractable. Nevertheless, this is the approach we took in our case
study, which is a rather small-scale one. As we show in �4, our solution admits some up-scaling, but
for a large-scale version of the problem, heuristics have to be used instead.

• Constraint programming (CP). In general, CP is not a very e�cient optimization technique; however,
as noted in [5], CP is particularly useful for crew scheduling if the problem is highly constrained
and/or when any feasible solution will su�ce even if it is not optimal.

• Metaheuristics. Most metaheuristic approaches can be adapted to crew scheduling problems, e.g.
genetic algorithms (see [8]) or simulated annealing (see [1]).

• Other heuristics. Apart from the applications of general metaheuristic approaches, a considerable
e�ort has been put into designing tailor-made heuristics for speci�c types of sta� scheduling problems
(see e.g. [2]); several of these heuristics contain applications of AI techniques, as in [6].

3 Problem statement

Speci�cs of crew scheduling in fast food chains. Fast food crew schedules exhibits several features
that make it di�cult to optimize. Perhaps the most prominent one is crew heterogeneity. As mentioned
above, fast food chains rely heavily on part-time and/or temporary employees, some of which are typically
underage students. There are several implications of this. Firstly, there are multiple skill levels that have
to be taken into account and scheduled in parallel; in our case study, there has to be at least one full-time
manager present at each time to supervise the current shift. Secondly, there are no standard shifts, such
as regular 8-hour blocks (which is the case in some other industries, and facilitates scheduling to a great
extent). Di�erent types of employees allow for and/or require di�erent shift lengths. Finally, part-time
employees can specify their available times, i.e. times when they can actually be on duty. These times are
typically speci�ed only a short time in advance: in our case study, non-full-time workers announce their
available times only 14 days ahead. This e�ectively rules out long-term planning, and (more importantly)
repetitive schedule plans; in other words, the schedule has to be re-optimized each week.

Scope of optimization. In our case study, we omit night shifts andmanagers from the model. According
to the restaurant's executive, both of these are scheduled separately, on a monthly basis (unlike the
remaining part of the schedule, which is prepared weekly for the reasons stated above).

Object types and sets. In our statement of the crew scheduling problem, we use the following objects:
employees, days, time periods and shifts. These objects, together with the related sets and their notation,
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are described in the following list:

E = the set of all employees. In the fast food chains, only a minor part of the sta� is typically made
up by full-time employees. The rest can be divided into part-timers, temporary jobs, and minors

(underage temporary-job employees, mostly students). In the mathematical notation, we can
write E = Efull ∪ Epart ∪ Etemp ∪ Emin.

D = the set of (numbered) working days (typically, Sunday through Saturday, i.e. D = {1, . . . , 7}).
T = the set of (numbered) time periods within a single day. (In our case study, these are half-hour

periods from 6:00 to 22:00 each day, and therefore T = {1, . . . , 32}.)
S = the set of acceptable shifts. In brief, shifts are collections of consecutive time periods; we will

describe acceptable shifts in more detail later on.

Scheduling constraints. A feasible schedule must follow be the following conditions:

(i) An employee can only be assigned to work at her available time; available times are speci�ed by
the employee in advance.

(ii) On each day, an employee's time on duty has to be made up by consecutive time periods (together
constituting a single shift).

(iii) An employee can be assigned to at most 5 shifts per week.

(iv) A shift has to be exactly 8 hours long for the full-timers, between 4 and 8 hours for the part-time
and temporary-job employees and between 4 and 6 hours for the minors (underage employees).

(v) No employee can be assigned to more than 40 hours a week in total (note that this already comes
from the conditions above). Moreover, full-time employees have to be given exactly 40 hours a week,
and part-time employees at least 25.

Scheduling objectives. Many di�erent objectives of sta� scheduling are mentioned in the literature;
in our case study, we restricted ourselves to two objectives that re�ect the goals pursued in practice in
our case study: (1) minimize the di�erence between the number of workers on duty and the sta� demand
in each time period, and (2) minimize the number of shifts. (The intuition behind the latter is that
employees prefer few long shifts to many short ones.) In our model, these two objectives are aggregated
using weights (or cost parameters) corresponding to their relative importance:

cunder = the cost per unit of undercoverage (sta� shortage) = 10.

cover = the cost per unit of overcoverage (sta� excess) = 5.

cshift = the cost per shift = 1.

Data inputs. There are two types of data supplied for a week's schedule: sta� requirements for each
time period, and employees' available times; the latter are speci�ed in the form of a �from�to� range. The
mathematical notation used in the rest of the paper is as follows:

redt = the number of sta� required at time period t on day d.

aved = the beginning of available time for employee e on day d (the number of the �rst available period).

aved = the end of available time for employee e on day d (the number of the last available period).

These data are typically supplied in a spreadsheet, such as the one shown in Figure 1.

Figure 1: A minimalist example of a spreadsheet with data inputs and the resulting schedule. Data inputs
are the numbers provided in the Available times table (the aved and aved values) and the # required

row (redt). Using Model 1, the graphical schedule is created simply by applying suitable conditional
formatting rules to the optimal 0�1 values of xedt variables.

Proceedings of 30th International Conference Mathematical Methods in Economics

- 1035 -



4 MILP formulations

In this section, we present two alternative MILP formulations of the problem, denoted as Model 1 and
Model 2. The latter is analogous to the many variations of Dantzig's classical set-covering formulation
[4]. Although this model is computationally quite e�cient, it requires that large amounts of data are
processed and prepared before the model is actually fed into an optimization software package, and the
results are not easily translated into a readable schedule format, such as the one shown in Figure 1
(which is the format that was used by our study's restaurant in past). We explain these issues in detail
in the discussion of Model 2; we nevertheless recognize that they might pose an obstacle for practical
usage by small businesses. For this reason, we devised Model 1, which does not require any additional
data processing�it works directly with the values of aved, aved, and redt�and, with proper conditional
formatting in a MS Excel spreadsheet, the exported results look exactly the same as the schedule shown
in Figure 1.

Model 1. Model 1 uses several decision variables, described in the list below. Binary variables are
denoted by Latin letters, while Greek letters represent real non-negative variables.

δ−dt = sta� shortage at time t, day d (negative part of the deviation from the requirement redt).

δ+dt = sta� overage at time t, day d (positive part of the deviation from the requirement redt).

λed = the length of the shift of employee e on day d (= 0 if e does not work on day d).

xedt = 1 if employee e works in time period t on day d.

yedt = 1 if employee e starts her shift in time period t on day d.

zedt = 1 if employee e ends her shift in time period t on day d.

In order to make the MILP formulation easier to read, we use simpli�ed notation for summation
and iteration indices: unless stated otherwise, e, d, and t are indices that cycle through the entire sets
E,D and T respectively, so that �

∑
e� e�ectively means �

∑
e∈E�, � for all d � means � for all d ∈ D � etc.

Moreover, we drop variable speci�cation from the formulation, as we have already speci�ed all variables
above. The resulting formulation of Model 1 is as follows:

minimize cover
∑

d,t δ
+
dt + c

under
∑

d,t δ
−
dt + cshift

∑
e,d,t yedt

subject to redt −
∑

e xedt = δ−dt − δ
+
dt for all d, t, (1a)

xedt = 0 for all e, d, and t < aved or t > aved, (1b)

xedt − xed,t−1 ≤ yedt for all e, d, t, (1c)

xedt − xed,t+1 ≤ zedt for all e, d, t, (1d)∑
t yedt ≤ 1 for all e, d, (1e)∑
t zedt ≤ 1 for all e, d, (1f)∑

d,t yedt ≤ 5 for all e, (1g)∑
t(t+ 1)zedt −

∑
t tyedt = λed for all e, d, (1h)

8 ≤ λed ≤ 16 for all e, d, (1i)

λed ≤ 6 for all d and e ∈ Emin, (1j)∑
d,t xedt = 40 for all d and e ∈ Efull, (1k)∑
d,t xedt ≥ 25 for all d and e ∈ Epart. (1l)

The objective function is straightforward: the value of a schedule is a weighted sum of the total
number of shifts and the deviations of scheduled sta� numbers from the requirements; (1a) calculates
these deviations from the schedule information contained in xedt. Constraints (1b) through (1l) enforce
the feasibility conditions (i) through (v) from section 2 in the following manner. (1b) requires that each
person is assigned work only at their available times�which is (i). Constraints (1c) and (1d) provide
the connection between x and y, z variables, saying that when x switches from 0 to 1 or vice versa in
consecutive time periods, there has to be a beginning or an end of a shift, respectively; for the constraints
to be correctly speci�ed in the �rst and last time periods, we need to de�ne constants xed0 = xed,|T |+1 = 0
for all d, e. (1e) and (1f) further require that each person starts and �nishes a shift at most once per day�
a one-shift-per-day requirement, which completes (ii). (1g) is a direct translation of (iii). (1h) calculates
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the length of a shift (λ) from its beginning and end (y, z), and (1i), (1j) express the requirement regarding
shift lengths in (iv). Finally, (1k) and (1l) together give (v).

Model 2. In Model 2, the main assignment variables do not assign employees to individual time periods

as in Model 1, but to complete shifts instead. Obviously, the number of time periods per day and
condition (iv) uniquely de�ne the set of all possible shifts for each day, S. From the available times
aved, aved, one can establish whether a particular shift can be assigned to a given employee on a given
day�observing conditions (i) and (iv). Model 2 works with this sort of information, which has to be
processed into the following parameters prior to solving the model:

cost = 1 if shift s covers time period t.

aveds = 1 if employee e is available for shift s on day d.

les = length of shift s.

Note that the task of extracting these parameters from a data source such as the spreadsheet in Figure 1
is very tedious even for small-scale problems, if it is to be carried out manually. For instance, in our case
study with 40 employees, 16 time periods and 7 working days, the array with cost parameters has 6,336
entries and the array with aveds has 52,920. Therefore, data preparation has to be automated somehow
(for our case study, we programmed several VBA procedures in MS Excel).

Model 2 uses the same variables δ−dt, δ
+
dt as Model 1; besides these, there is only one more type of

binary variables: xeds = 1 if employee e is assigned to shift s on day d. The formulation of Model 2
is given below; we use a similar convention regarding summation and iteration indices as with Model 1.
The objective function is analogous to that of Model 1, as is the �rst constraint. Constraint (2b) enforces
conditions (i) and (iv); (2c) and (2d) correspond directly to conditions (ii) and (iii) respectively, and
constraints (2e), (2f) and (2g) together give (v):

minimize cunder
∑

d,t δ
−
dt + cover

∑
d,t δ

+
dt + cshift

∑
p,s,d xeds

subject to redt −
∑

s,e costxeds = δ−dt − δ
+
dt for all d, t, (2a)

xeds ≤ aveds for all e, s, d, (2b)∑
s xeds ≤ 1 for all e, d, (2c)∑

s,d xeds ≤ 5 for all e, (2d)∑
s,d lesxeds ≤ 80 for all e, (2e)∑
s,d lesxeds = 80 for all e ∈ Efull, (2f)∑
s,d lesxeds ≥ 50 for all e ∈ Epart. (2g)

Computational e�ciency. Both models are of the MILP type with thousands of binary variables even
for small-scale problems�which poses a potential threat to computational tractability; in Model 1, the
number of binary variables is 3|E|·|D|·|T |, and in Model 2 it is |E|·|D|·|S|. The latter number is typically
greater, though the precise comparison depends on the number of time periods and the rules regarding
acceptable shift lengths. In our case study, there were 26,880 and 52,920 binary variables in Model 1
and 2, respectively. On the other hand, Model 2 typically has fewer constraints, and more importantly,
these constraints have a much simpler structure than those of Model 1. This simple structure seems to
be e�ectively handled both in the pre-proccessing routines of today's MILP solvers and in the actual
solving procedures. As a result, Model 2 outperformed Model 1 for all of our problem instances. To
solve both models, we used the Lingo 12 optimization software with its built-in solvers, installed on a
PC with Intel dual dore 2.2 GHz processor and 2 GB RAM. Primarily, we worked with the empiric data
from our case study (40 employees, 7 working days, 32 time periods); apart from that, we used several
other test datasets with between 10 and 80 employees to analyze the e�ect of a varying problem size. In
most cases, Model 2 was solved within 5 minutes; in a few isolated cases, the solver found a near-optimal
solution within the �rst 5 minutes, and the optimal solution followed in another 5 to 10 minutes. With
Model 1, the situation was hardly as optimistic. In terms of minutes, optimal solutions were found for
none but the smallest problems (10 to 15 employees). For cca 15�25 employees, the optimal shedule was
found in several hours' time, making it suitable for applications where the calculation can be carried out
overnight. For larger problems, the solver was mostly unable to reach the optimum within �rst 10 hours;
however, it typically did �nd a feasible schedule that was within 1�2% of the objective bound; in practical
applications, these solutions can be used without too much loss of schedule quality.
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5 Empiric vs. optimal schedules

In order to evaluate the scheduling e�ciency in our restaurant, we compared the empiric and MILP-
obtained solutions for a ten-week period in the winter and spring of 2012. On average, the empiric
objective function was 3�5% above the optimal one. There are three important notes on this comparison.
Firstly, for the reasons stated in �3, we only focused on day shifts and non-managers. This simpli�cation
probably improves the relative performance of empiric schedules; we believe that if we included long-
term scheduling of night shifts and managers, the gap between empiric and optimal schedules would
grew wider. Secondly, due to the presence of a large number of temporary jobs with loose schedule
restrictions, the problem was not overly constrained, especially on working days, which again allowed the
shedule managers to �nd quite good solutions by hand. We expect that in other settings, the empiric
schedules would fall futher below the MILP-obtained ones. Thirdly, it should be noted that the objective
function in MILP models does not capture all the pros and cons of various alternative schedules. For
instance, it does not account for the objectives listed under (d) in �3; in empiric schedules, these criteria
are typically re�ected, at least to a certain extent. Improving on this is a task for our future work.

6 Conclusions

The major aim of this paper was to show that OR methods are under-exploited by Czech businesses�even
such businesses as the fast food chains, which are mentioned as those setting an example of operations
e�ciency. In order to show this, we focused on a particular fast food restaurant's crew scheduling; here,
sta� is scheduled manually, which both incurs unnecessary scheduling cost (in our case study, scheduling
e�ort amounts to nearly one man-day a week) and results in a sub-optimal schedule. Optimal schedules
for this restaurant were found using MILP. We presented two MILP formulations: while Model 2 was
adapted from the �classical� scheduling MILP models, Model 1 was our invention. Although the latter is
computationally less e�cient, it requires no additional data processing, and thus is easily implemented;
we believe that it might �nd its use in small businesses. Finally, as mentioned in �5, future research is
needed to incorporate additional criteria in the MILP models (such as grouping of work days, fairness
etc.) and test the computational tractability of these extended models.
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